Describing Combinational circuits in BSV

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology
Three simple combinational circuits

NOT

<table>
<thead>
<tr>
<th>a</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Any combinational circuit can be built using these three gates.
Some other famous gates

NAND

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[s = \sim(a \cdot b) \]

NOR

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[s = \sim(a + b) \]

Can you express these gates using NOT, AND, and OR gates?
Exclusive OR (XOR): another famous gate

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

From the Truth Table XOR produces a 1 when either \((a=0)\) AND \((b=1)\) or \((a=1)\) AND \((b=0)\). Hence,

\[a \oplus b = \neg a \cdot b + a \cdot \neg b \]

Can you express XOR using NOT, AND, and OR gates?
Pictorial conventions for drawing inverters

All these represent the same circuit
Nomenclature

We use the words in each of the following categories interchangeably

- combinational circuits, Boolean expressions, Boolean circuits
- gate, Boolean operator

We use variables to name wires in a combinational circuit
Describing Complex Combinational circuits

A combinational circuit with \(n \) input variables and \(m \) outputs has \(2^n \) rows and \(m \) columns in its Truth Table representation.

- Truth Tables are not a practical representation for circuits with large number of inputs.
- Circuit diagrams are even more tedious to draw.
- Both representations are useless when we want computers to simulate the behavior of a circuit, i.e., determine the output given an input.

We will use a programming language called Bluespec System Verilog (BSV) to express all circuits.
Half Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean equations

\[s = a \oplus b \]
\[c = a \cdot b \]

function ha(a, b);
\[s = a \wedge b; \]
\[c = a \& b; \]
return {c, s};
endfunction

Not quite correct – needs type annotations
Half Adder

```verbatim
corrected

function Bit#(2) ha(Bit#(1) a, Bit#(1) b);
  Bit#(1) s = a ^ b;
  Bit#(1) c = a & b;
  return {c, s};
endfunction
```

“Bit#(1) a” type declaration says that a is one bit wide

{c, s} represents bit concatenation

How big is {c, s}?

2 bits
BSV notes

Suppose we write \(t = \text{ha}(a,b) \) then \(t \) is a two bit quantity representing \(c \) and \(s \) values.

We can recover \(c \) and \(s \) values from \(t \) by writing \(t[1] \) and \(t[0] \), respectively.

\[
\begin{align*}
\text{function} & \quad \text{Bit#(2) ha(Bit#(1) a, Bit#(1) b);} \\
& \quad \text{Bit#(1) s = a ^ b;} \\
& \quad \text{Bit#(1) c = a & b;} \\
& \quad \text{return \{c,s\};} \\
\end{align*}
\]

\(\text{ha} \) can be used as a black-box as long as we understand its type signature.
Full Adder
1-bit adder with a carry-in input

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
 Bit#(2) ab = ha(a, b); // Extracts the sum bit
 Bit#(2) abc = ha(ab[0], c_in); // Extracts the carry bit
 Bit#(1) c_out = ab[1] | abc[1];
 return {c_out, abc[0]};
endfunction

ha is being used as a black-box; fa code is simply a wiring diagram
The “let” syntax

function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
 let ab = ha(a, b);
 let abc = ha(ab[0], c_in);
 let c_out = ab[1] | abc[1];
 return {c_out, abc[0]};
endfunction

No need to write the type if the compiler can deduce it.
Types

- A type is a grouping of values:
 - Integer: 1, 2, 3, …
 - Bool: True, False
 - Bit: 0, 1

- More complex types can be defined in terms of simpler types
 - Tuple2#(Integer, Integer) represents a pair of Integers
 - function Integer fname (Integer arg) represents a function from Integers to Integers and is named fname

- Every expression in a BSV program has a type; sometimes it is specified explicitly and sometimes it is deduced by the compiler

- Thus, we say an expression has a type or belongs to a type

An expression has exactly one type
Parameterized types:

- A type declaration itself can be parameterized by other types.
- Parameters are indicated by using the syntax `'#'`.
 - For example `Bit#(n)` represents n bits and can be instantiated by specifying a value of n. `Bit#(1), Bit#(32), Bit#(8), ...`
Type synonyms

typedef Bit #(8) Byte;
typedef Bit #(32) Word;
typedef Bit #(32) Data;
typedef Tuple2#(a,a) Pair#(type a);
typedef Int #(n) MyInt#(numeric type n);
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
- If the type inference cannot be performed or the type declarations are inconsistent then the compiler complains.

```plaintext
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
    Bit#(2) ab = ha(a, b);
    Bit#(2) abc = ha(ab[0], c_in);
    Bit#(2) c_out = ab[1] | abc[1];
    return {c_out, abc[0]};
endfunction
```

Type checking prevents lots of silly mistakes.
Selectors and Multiplexers
Selecting a wire: $x[i]$

- **Constant Selector:** e.g., $x[2]$
- **Dynamic selector:** $x[i]$

Assume x is 4 bits wide.

- No hardware; $x[2]$ is just the name of a wire.

- 4-way mux.
A 2-way multiplexer

A mux is simple conditional expression

BSV: `(s==0)? a : b ;`

Python: `a if s == 0 else b`

Gate-level implementation

If `a` and `b` are `n`-bit wide then this structure will be replicated `n` times
A 4-way multiplexer

case ({s1,s0}) matches
 0: a;
 1: b;
 2: c;
 3: d;
endcase

def mux(a, b, s):
 if s == 0:
 return a
 elif s == 1:
 return b
 elif s == 2:
 return c
 else:
 return d

n-way mux can be implemented using n-1 two-way muxes
Shift operators
Logical right shift by 2

- Fixed size shift operation is cheap in hardware – just wire the circuit appropriately.
- Other types of shifts are similar.

Rotated:

Arithmetic:

useful for multiplication and division by 2^n.
Logical right shift by n

Suppose we want to build a shifter which shifts a value x by n where n is between 0 and 31.

One way to do this is by connecting 31 different shifters via a mux.

How many 2-way one-bit muxes are needed to implement this structure?

$$n \times (n-1)$$

Can we do better?
Logical right shift by n

Shift n can be broken down into $\log n$ steps of fixed-length shifts of size 1, 2, 4, ...

- For example, we can perform Shift 3 (=2+1) by doing shifts of size 2 and 1
- Shift 5 (=4+1) by doing shifts of size 4 and 1
- Shift 21 (=16+4+1) by doing shifts of size 16, 4 and 1

For a 32-bit number, a 5-bit n can specify all the needed shifts

- $3_{10} = 00011_2$, $5_{10} = 00101_2$, $21_{10} = 10101_2$

The bit encoding of n tells us which shifters are needed; if the value of the i^{th} (least significant) bit is 1 then we need to shift by 2^i bits
Conditional operation: shift versus no-shift

We need a mux to select the appropriate wires: if s is one the mux will select the wires on the left otherwise it would select wires on the right

$$(s==0)?\{a,b,c,d\}:\{0,0,a,b\};$$
Logical right shift circuit

- Define $\log n$ shifters of sizes 1, 2, 4, ...
- Define $\log n$ muxes to perform a particular size shift
- Shift circuit can be expressed as $\log n$ nested conditional expressions where s_0, s_1 ..

Represent the bits of n

We will explore such a design in the next recitation