CMOS Technology

Daniel Sanchez
Computer Science & Artificial Intelligence Lab
M.I.T.
Clarification: D Flip-Flop Timing

- Flip-flop input D should not change around the rising edge of the clock to avoid *metastability*
- Formally, D should be a stable and valid digital value:
 - For at least t_{SETUP} before the rising edge of the clock
 - For at least t_{HOLD} after the rising edge of the clock
- Flip-flop propagation delay t_{PD} is measured from rising edge of the clock (CLK→Q)
Meeting the Setup-Time Constraint

• To meet FF2’s setup time,

\[t_{PD,FF1} + t_{PD,CL} \leq t_{CLK} - t_{SETUP,FF2} \]

\[t_{CLK} \geq t_{PD,FF1} + t_{PD,CL} + t_{SETUP,FF2} \]

• The slowest register-to-register path in the system determines the clock frequency \(\rightarrow \) limited amount of combinational logic between registers
Meeting the Hold-Time Constraint

- Propagation delay (t_{PD}): Upper bound on time from valid inputs to valid outputs
 - But upper bounds don’t help us analyze hold time...
- Contamination delay (t_{CD}): Lower bound on time from invalid inputs to invalid outputs
- To meet FF2’s hold-time constraint,
 \[t_{CD,FF1} + t_{CD,CL} \geq t_{HOLD,FF2} \]
- Tools may need to add logic to fast paths to meet t_{HOLD}
A Deep Dive Into a Chip

Packaged chip

Silicon die (100-400mm²)

Transistor (FET)

Die cross-section

6-15 metal layers (wires)

Source: Intel

March 1, 2018
Field-Effect Transistors (FETs)

• Nearly all digital systems are built using field-effect transistors, which are **voltage-controlled switches**

• FETs come in two varieties: nFET and pFET

 nFET

 D (drain)
 ▼
 G (gate)
 ▼
 S (source)

 A high voltage at gate creates conducting path between source and drain

 pFET

 S (source)
 ▼
 G (gate)
 ▼
 D (drain)

 A low voltage at gate creates conducting path between source and drain
Labeling Source and Drain

• There is no physical difference between source and drain, called the **diffusion terminals**

• By convention, we label diffusion terminals as source or drain depending on their voltages:
 - On nFETs, source = diffusion terminal at lower voltage
 - On pFETs, source = diffusion terminal at higher voltage

![Diagram showing nFET and pFET with labeled voltages](image)

• This convention lets us define the behavior of FETs using the voltage between gate and source
FET Switching Model

- FETs have a **threshold voltage** V_{TH}
- nFET is ON if the voltage between gate and source V_{GS} exceeds V_{TH}, OFF otherwise
- pFET is ON if the voltage between source and gate V_{SG} exceeds V_{TH}, OFF otherwise

This is a very simplified model, but it is sufficient to build logic gates
What Does This Circuit Compute?

CMOS inverter

Assume $V_{TH} < V_{DD}/2$

$V_{IN} < V_{TH}$ $V_{IN} > V_{DD} - V_{TH}$

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Note on Terminology

- MOSFETs (metal-oxide-semiconductor field-effect transistors) are the most common type of FET

- nFET and pFET are sometimes abbreviated as nMOS and pMOS

- CMOS stands for complementary MOS
What Does This Circuit Compute?

A B Z
0 0 0
0 1 1
1 0 1
1 1 0

CMOS NAND gate
CMOS Logic

- CMOS gates have complementary pullup and pulldown networks, i.e., the pullup is on where the pulldown is off and vice versa.

<table>
<thead>
<tr>
<th>pullup</th>
<th>pulldown</th>
<th>F(inputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>off</td>
<td>driven “1”</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>driven “0”</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>driven “X”</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>no connection</td>
</tr>
</tbody>
</table>

- CMOS uses pFETs to implement the pullup network and nFETs to implement the pulldown network.
Some Questionable Gates

- What can go wrong with the following gates?

A=0 B=1 or A=1 B=0 connect supply and ground

- CMOS Rule #1: Complementary pullup and pulldown networks
- CMOS Rule #2: pFETs in pullup, nFETs in pulldown

pFET doesn’t pull down
V_{OUT} below V_{TH}

nFET doesn’t pull up
V_{OUT} above V_{DD} - V_{TH}
CMOS Complements

- Conducts when A is high:
 \[A \]

- Conducts when A is low:
 \[\overline{A} \]

- Conducts when A is high and B is high:
 \[A \cdot B \]

- Conducts when A is low or B is low:
 \[\overline{A} + \overline{B} = \overline{A \cdot B} \]

- Conducts when A is high or B is high:
 \[A + B \]

- Conducts when A is low and B is low:
 \[\overline{A} \cdot \overline{B} = \overline{A + B} \]
General CMOS Gate Recipe

Step 1. Derive the pullup network that does what you want, e.g.,

\[F = \overline{A} + \overline{B} \cdot \overline{C} \]

(Determine what combination of inputs generates a high output)

Step 2. Derive complementary pulldown network: replace pFETs with NFETs, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pFET pullup network from Step 1 with nFET pulldown network from Step 2 to form the CMOS gate.

Can CMOS gates implement arbitrary functions? No
CMOS Gates are Inverting

- In a CMOS gate, rising inputs (0→1) lead to falling outputs (1→0) and vice versa.

- On a rising input,
 - nFETs go OFF→ON, so pulldown may connect output to ground.
 - pFETs go ON→OFF, so pullup may disconnect output from \(V_{DD} \).
 - Output either stays at the same value or falls.

- Corollary: Cannot build non-inverting logic using a single CMOS gate.
 - Example: AND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A·B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rising input</th>
<th>rising output</th>
</tr>
</thead>
</table>
Analyzing Delay, Power, and Area of CMOS Gates

NOTE: Demystification, will not be on the quiz
MOSFET Physical Structure

- nFET
- gate
- source
- drain
- Metal
- Oxide (dielectric)
- Semiconductor

March 1, 2018
MOSFET Electrical View

With $V_{GS} < V_{TH}$, almost no current flows between source and drain.

As V_{GS} reaches V_{TH}, a channel forms between source and drain.

The shape of the channel (and its resistance) also depends on the voltage at the drain. But a low-resistance channel will exist while $V_{GS} > V_{TH}$.
FET First-Order Electrical Model

- Simplest possible model that lets us reason about delay, area, and power. Not very accurate!

\[
R_{\text{channel}} = \begin{cases}
R_{\text{OFF}} & \text{if } V_{GS} < V_{TH} \\
R_{\text{ON}} & \text{if } V_{GS} \geq V_{TH}
\end{cases}
\]

\[
R_{\text{ON}} \ll R_{\text{OFF}}
\]
Consider the following circuit. Given $V_{IN}(t)$, can you derive $V_{OUT}(t)$?

For $t > 0$,

$$V_{OUT}(t) = V_{OUT}(0)e^{-t/RC}$$
Propagation Delay

Propagation delay \((t_{PD})\): Upper bound on the delay from valid inputs to valid outputs.

\[
V_{IN} \leq t_{PD} \leq V_{OUT}
\]

To minimize \(t_{PD}\), must keep resistances and capacitances low.

March 1, 2018

L07-22
Contamination Delay

Contamination delay (t_{CD}): Lower bound on the delay from any invalid input to an invalid output

$$V_{\text{IN}} \rightarrow V_{\text{IH}} \geq t_{CD} \geq V_{\text{IL}} \rightarrow V_{\text{OUT}}$$

$$V_{\text{OL}} \rightarrow V_{\text{OH}} \geq t_{CD} \geq V_{\text{IL}} \rightarrow V_{\text{IN}}$$
MOSFET Sizing

- CMOS gates use MOSFETs with smallest possible L and choose W to set performance
 - Wider FETs drive more current (lower R), but their gates are harder to drive (higher C) and they take more area

\[
C_{\text{gate}} \propto L \cdot W
\]
\[
R_{\text{channel}} \propto L/W
\]

How do \(C_{\text{gate}}\) and \(R_{\text{channel}}\) change with L and W?
Standard Cell Libraries

- A standard cell library provides implementations of common gates (NAND, NOR, XOR, etc.) for a specific implementation technology.

- Each gate includes:
 - Electrical parameters (e.g., Rs and Cs)
 - Physical layout

- Synthesis tools use gates from the standard library instead of sizing and placing individual transistors.
Wide (High-Fanin) Gates

Most standard cell libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R_{pulldown} or R_{pullup}. Instead, use trees of smaller devices...

Example: 8-input NAND

How does t_{PD} grow with the number of inputs N?

If we use a single CMOS gate, $t_{PD} \propto N$

If we use a tree of gates, $t_{PD} \propto \log(N)$
CMOS Power Dissipation

- Total power dissipation: \[P = P_{\text{dynamic}} + P_{\text{static}} \]
- Dynamic power: Caused by 0↔1 transitions of nodes in the circuit
 - Charging/discharging each capacitor consumes \(\frac{1}{2} C V_{DD}^2 \) energy
 - If on average \(C_s \) capacitance across the chip switches each cycle,
 \[P_{\text{dynamic}} = \frac{1}{2} C_s V_{DD}^2 f_{CLK} \]
- Static power: Caused by
 - Subthreshold leakage: Even when the FET is off, a very small current flows from source to drain (\(R_{OFF} < \infty \))
 - Tunneling current: Gate and channel are separated by a very thin (<1nm) dielectric, so some electrons tunnel through
 \[P_{\text{static}} = I_{\text{static}} V_{DD} \]
 - Static power is typically 10-30% of total power
Summary

• FETs behave as voltage-controlled switches

• CMOS gates:
 – Use complementary pullup and pulldown networks
 – Use pFETs in pullup, nFETs in pulldown network

• CMOS gates are inverting (rising inputs can only cause falling outputs, and vice versa)

• Timing specs:
 – t_{PD}: upper bound on time from valid inputs to valid outputs
 – t_{CD}: lower bound on time from invalid inputs to invalid outputs
 – In flip-flops, input must be valid at least t_{SETUP} before and t_{HOLD} after rising clock edge
Thank you!

Next lecture: Programmable Architectures & RISC-V ISA