Complex Combinational circuits in Bluespec

Arvind
Computer Science & Artificial Intelligence Lab
M.I.T.
2-bit Ripple-Carry Adder
cascading full adders

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
2-bit Ripple-Carry Adder
cascading full adders

Use `fa` as a black-box

```
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
```
2-bit Ripple-Carry Adder
cascading full adders

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0;
 Bit#(3) c = 0;
 c[0] = 0;

Use fa as a black-box
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0;
 Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0];
 c[1] = cs0[1];

Use fa as a black-box
2-bit Ripple-Carry Adder
cascading full adders

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0; Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0]; c[1] = cs0[1];
 let cs1 = fa(x[1], y[1], c[1]);
 s[1] = cs1[0]; c[2] = cs1[1];
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0;
 Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0];
 c[1] = cs0[1];
 let cs1 = fa(x[1], y[1], c[1]);
 s[1] = cs1[0];
 c[2] = cs1[1];
 return {c[2], s};
endfunction
2-bit Ripple-Carry Adder
cascading full adders

function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0; Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0]; c[1] = cs0[1];
 let cs1 = fa(x[1], y[1], c[1]);
 s[1] = cs1[0]; c[2] = cs1[1];
 return {c[2],s};
endfunction
w-bit Ripple-Carry Adder

- For a parameterized w-bit adder, we cannot write a straight-line program as we did for the 2-bit adder
w-bit Ripple-Carry Adder

- For a parameterized w-bit adder, we cannot write a straight-line program as we did for the 2-bit adder
- Use loops!
For a parameterized w-bit adder, we cannot write a straight-line program as we did for the 2-bit adder.

Use loops!

```verbatim
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
    Bit#(w) s = 0;
    Bit#(w+1) c = 0;
    c[0] = c0;
    for (Integer i=0; i<w; i=i+1) begin
        let cs = fa(x[i], y[i], c[i]);
        c[i+1] = cs[1];
        s[i] = cs[0];
    end
    return {c[w], s};
endfunction
```
w-bit Ripple-Carry Adder

- For a parameterized w-bit adder, we cannot write a straight-line program as we did for the 2-bit adder
- Use loops!

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
    Bit#(w) s = 0;
    Bit#(w+1) c = 0;
    c[0] = c0;
    for (Integer i=0; i<w; i=i+1) begin
        let cs = fa(x[i], y[i], c[i]);
        c[i+1] = cs[1];
        s[i] = cs[0];
    end
    return {c[w], s};
endfunction
```

This program has some subtle type errors in but before fixing them, we will discuss how the gates are generated (synthesized) from a loop.
Bluespec is for describing circuits

- Bluespec is like a language for drawing pictures of interconnected boxes
Bluespec is for describing circuits

- Bluespec is like a language for drawing pictures of interconnected boxes
- Boxes happen to be Boolean gates with inputs and outputs
Bluespec is for describing circuits

- Bluespec is like a language for drawing pictures of interconnected boxes.
- Boxes happen to be Boolean gates with inputs and outputs.
- However, unlike ordinary pictures, our boxes, i.e., gates, have computational meaning, and therefore, we can ask what values a circuit would produce on its output lines, given a specific set of values on its input lines.
Bluespec is for describing circuits

- Bluespec is like a language for drawing pictures of interconnected boxes
- Boxes happen to be Boolean gates with inputs and outputs
- However, unlike ordinary pictures, our boxes, i.e., gates, have computational meaning, and therefore, we can ask what values a circuit would produce on its output lines, given a specific set of values on its input lines
- Even though the primary purpose of the Bluespec compiler is to synthesize a network of gates, the ability to simulate the functionality of the resulting circuit is extremely important
Bluespec: Gate synthesis versus simulation 2-bit adder

```
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
    Bit#(2) s = 0; Bit#(3) c = 0;
    c[0] = 0;
    let cs0 = fa(x[0], y[0], c[0]);
    s[0] = cs0[0]; c[1] = cs0[1];
    let cs1 = fa(x[1], y[1], c[1]);
    s[1] = cs1[0]; c[2] = cs1[1];
return {c[2], s};
endfunction
```
Bluespec: Gate synthesis versus simulation 2-bit adder

```plaintext
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
    Bit#(2) s = 0;  Bit#(3) c = 0;
    c[0] = 0;
    let cs0 = fa(x[0], y[0], c[0]);
    s[0] = cs0[0];  c[1] = cs0[1];
    let cs1 = fa(x[1], y[1], c[1]);
    s[1] = cs1[0];  c[2] = cs1[1];
return {c[2], s};
endfunction
```

September 20, 2018
Bluespec: Gate synthesis versus simulation 2-bit adder

```
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
    Bit#(2) s = 0;   Bit#(3) c = 0;
    c[0] = 0;
    let cs0 = fa(x[0], y[0], c[0]);
    s[0] = cs0[0];   c[1] = cs0[1];
    let cs1 = fa(x[1], y[1], c[1]);
    s[1] = cs1[0];   c[2] = cs1[1];
    return {c[2],s};
endfunction
```

Gate synthesis
Bluespec: Gate synthesis versus simulation 2-bit adder

```plaintext
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
    Bit#(2) s = 0; Bit#(3) c = 0;
    c[0] = 0;
    let cs0 = fa(x[0], y[0], c[0]);
    s[0] = cs0[0]; c[1] = cs0[1];
    let cs1 = fa(x[1], y[1], c[1]);
    s[1] = cs1[0]; c[2] = cs1[1];
return {c[2], s};
endfunction
```

simulate

```plaintext
fa
```

Gate synthesis

```plaintext
fa
```

```
Bluespec: Gate synthesis versus simulation 2-bit adder

```
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0; Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0]; c[1] = cs0[1];
 let cs1 = fa(x[1], y[1], c[1]);
 s[1] = cs1[0]; c[2] = cs1[1];
 return {c[2],s};
endfunction
```

- add2(2’b11, 2’b01) ⇒ 3’b100
Bluespec: Gate synthesis versus simulation 2-bit adder

```
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
 Bit#(2) s = 0; Bit#(3) c = 0;
 c[0] = 0;
 let cs0 = fa(x[0], y[0], c[0]);
 s[0] = cs0[0]; c[1] = cs0[1];
 let cs1 = fa(x[1], y[1], c[1]);
 s[1] = cs1[0]; c[2] = cs1[1];
return {c[2], s};
endfunction
```

- add2(2'b11, 2'b01) \(\Rightarrow\) 3'b100
- add2(2'b01, 2'b01) \(\Rightarrow\) 3'b010

simulate

![Gate synthesis diagram](image)
Bluespec: Gate synthesis versus simulation 2-bit adder

```verbatim
function Bit#(3) add2(Bit#(2) x, Bit#(2) y);
Bit#(2) s = 0; Bit#(3) c = 0;
c[0] = 0;
let cs0 = fa(x[0], y[0], c[0]);
s[0] = cs0[0]; c[1] = cs0[1];
let cs1 = fa(x[1], y[1], c[1]);
s[1] = cs1[0]; c[2] = cs1[1];
return {c[2],s};
endfunction
```

- add2(2’b11, 2’b01) \(\Rightarrow\) 3’b100
- add2(2’b01, 2’b01) \(\Rightarrow\) 3’b010

Caution: In spite of the fact that Bluespec programs, like programs in other software languages, produce outputs given inputs, the purpose of Bluespec programs is to describe circuits.
Compiling Bluespec into circuits

- Static elaboration: Compiler eliminates all constructs which have no direct hardware meaning
  - All data structures are converted into bit vectors
  - Loops are unfolded
  - Functions are in-lined
  - What remains is an acyclic graph of Boolean gates
Compiling Bluespec into circuits

- Static elaboration: Compiler eliminates all constructs which have no direct hardware meaning
  - All data structures are converted into bit vectors
  - Loops are unfolded
  - Functions are in-lined
  - What remains is an acyclic graph of Boolean gates

- The compiler actually generates Verilog, which is synthesized first into a generic network of gates and then later mapped into specific gates provided by the library of a specific hardware technology
Compiling Bluespec into circuits

- Static elaboration: Compiler eliminates all constructs which have no direct hardware meaning
  - All data structures are converted into bit vectors
  - Loops are unfolded
  - Functions are in-lined
  - What remains is an acyclic graph of Boolean gates

- The compiler actually generates Verilog, which is synthesized first into a generic network of gates and then later mapped into specific gates provided by the library of a specific hardware technology
  - Both the Bluespec compiler and the Verilog compiler do many different Boolean optimizations with the intention of reducing the circuit area, the propagation delay or both
Back to our w-bit ripple carry adder

for (Integer $i=0; i<w; i=i+1$) begin
    let $cs = fa(x[i], y[i], c[i])$;
    $c[i+1] = cs[1]$;
    $s[i] = cs[0]$;
end
Back to our w-bit ripple carry adder

Unfold the loop

Can be done only when the value of w is known

```plaintext
for(Integer i=0; i<w; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
end
```
Back to our w-bit ripple carry adder

```
for(Integer i=0; i<w; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
end
```

Suppose w = 3

Unfold the loop

Can be done only when the value of w is known
Back to our w-bit ripple carry adder

```plaintext
for (Integer i=0; i<w; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
end

Unfold the loop

Can be done only when the value of w is known

Suppose w = 3

cs0 = fa(x[0], y[0], c[0]);
c[1] = cs0[1];
s[0] = cs0[0];
```

September 20, 2018
Back to our $w$-bit ripple carry adder

```markdown
for (Integer $i=0; i<w; i=i+1$) begin
 let $cs = fa(x[i], y[i], c[i]);$
 $c[i+1] = cs[1];$
 $s[i] = cs[0];$
end
```

Unfold the loop

Can be done only when the value of $w$ is known

Suppose $w = 3$

```markdown
cs0 = fa(x[0], y[0], c[0]);
c[1] = cs0[1];
s[0] = cs0[0];
cs1 = fa(x[1], y[1], c[1]);
c[2] = cs1[1];
s[1] = cs1[0];
```

$\text{i = 0}$

$\text{i = 1}$
Back to our w-bit ripple carry adder

```
for(Integer i=0; i<w; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
end
```

Unfold the loop

Can be done only when the value of w is known

Suppose w = 3

```
cs0 = fa(x[0], y[0], c[0]);
c[1] = cs0[1];
s[0] = cs0[0];
cs1 = fa(x[1], y[1], c[1]);
c[2] = cs1[1];
s[1] = cs1[0];
cs2 = fa(x[2], y[2], c[2]);
c[3] = cs2[1];
s[2] = cs2[0];
```

i = 0

i = 1

i = 2
Loops to gates

\[
\begin{aligned}
\text{cs0} &= \text{fa}(x[0], y[0], c[0]); \\
\text{c[1]} &= \text{cs0}[1]; \quad \text{s[0]} = \text{cs0}[0]; \\
\text{cs1} &= \text{fa}(x[1], y[1], c[1]); \\
\text{c[2]} &= \text{cs1}[1]; \quad \text{s[1]} = \text{cs1}[0]; \\
\ldots
\end{aligned}
\]

\[
\begin{aligned}
\text{c[w]} &= \text{cs}[1]; \\
\text{s[w-1]} &= \text{cs}[0];
\end{aligned}
\]
Loops to gates

\[
\begin{align*}
\text{cs0} & = \text{fa}(x[0], y[0], c[0]); \quad c[1]=\text{cs0}[1]; \quad s[0]=\text{cs0}[0]; \\
\text{cs1} & = \text{fa}(x[1], y[1], c[1]); \quad c[2]=\text{cs1}[1]; \quad s[1]=\text{cs1}[0]; \\
& \ldots \\
\text{cs}\ w & = \text{fa}(x[w-1], y[w-1], c[w-1]); \\
& \quad c[w] = \text{csw}[1]; \quad s[w-1] = \text{csw}[0];
\end{align*}
\]

Unfolded loop defines an acyclic wiring diagram
Loops to gates

Unfolded loop defines an acyclic wiring diagram

\[
\begin{align*}
\text{cs}_0 &= \text{fa}(x[0], y[0], c[0]); \\
c[1] &= \text{cs}_0[1]; \\
s[0] &= \text{cs}_0[0]; \\
\text{cs}_1 &= \text{fa}(x[1], y[1], c[1]); \\
c[2] &= \text{cs}_1[1]; \\
s[1] &= \text{cs}_1[0]; \\
\cdots \\
\text{cs}_w &= \text{fa}(x[w-1], y[w-1], c[w-1]); \\
c[w] &= \text{cs}_w[1]; \\
s[w-1] &= \text{cs}_w[0]; \\
\end{align*}
\]
Loops to gates

Unfolded loop defines an acyclic wiring diagram

Each instance of function $fa$ is replaced by its body
Instantiating the parametric Adder

- How do we define concrete instances like add3, add32 ... using addN?

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
```
Instantiating the parametric Adder

- How do we define concrete instances like add3, add32 ... using addN?

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0);
endfunction
```
Instantiating the parametric Adder

How do we define concrete instances like add3, add32 ... using addN?

function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0);
    return addN(x, y, c0);
endfunction
Instantiating the parametric Adder

- How do we define concrete instances like add3, add32 ... using addN?

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0);
 return addN(x, y, c0);
endfunction
```

- The numeric type w on the right-hand side (RHS) implicitly gets instantiated to 3 because of the left-hand side (LHS) declarations.
Instantiating the parametric Adder

- How do we define concrete instances like add3, add32 ... using addN?

  function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

  function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0);

  return addN(x, y, c0);

endfunction

- The numeric type w on the right-hand side (RHS) implicitly gets instantiated to 3 because of the left-hand side (LHS) declarations

- Similarly,
### Instantiating the parametric Adder

- How do we define concrete instances like `add3`, `add32` ... using `addN`?

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

function Bit#(4) add3(Bit#(3) x, Bit#(3) y, Bit#(1) c0);
 return addN(x, y, c0);
endfunction

function Bit#(33) add32(Bit#(32) x, Bit#(32) y, Bit#(1) c0);
 return addN(x, y, c0);
endfunction
```

- The numeric type `w` on the right-hand side (RHS) implicitly gets instantiated to 3 because of the left-hand side (LHS) declarations

- Similarly,

```plaintext
function Bit#(w+1) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);
```

- Similarly,
Introduction to Types in Bluespec
Types

- A type is a *grouping* of values, examples
  - `Bit#(16)` // 16-bit wide bit-vector (16 is a numeric type)
  - `bit [15:0]` // synonym for `Bit#(16)`
  - `Bool` // 1-bit value representing True and False
  - `UInt#(32)` // unsigned integers, 32 bits wide
  - `Vector#(16,Int#(8))` // Vector of size 16 containing `Int#(8)`'s
Types

- A type is a *grouping* of values, examples
  - Bit#(16)  // 16-bit wide bit-vector (16 is a numeric type)
  - bit [15:0]  // synonym for Bit#(16)
  - Bool  // 1-bit value representing True and False
  - UInt#(32)  // unsigned integers, 32 bits wide
  - Vector#(16,Int#(8))  // Vector of size 16 containing Int#(8)’s

- Every expression in a Bluespec program has a type; sometimes it is specified explicitly and sometimes it is deduced by the compiler
  - Thus, we say an expression has a type or belongs to a type
Types

- A type is a *grouping* of values, examples
  - Bit#(16) // 16-bit wide bit-vector (16 is a numeric type)
  - bit [15:0] // synonym for Bit#(16)
  - Bool // 1-bit value representing True and False
  - UInt#(32) // unsigned integers, 32 bits wide
  - Vector#(16,Int#(8)) // Vector of size 16 containing Int#(8)’s

- Every expression in a Bluespec program has a type; sometimes it is specified explicitly and sometimes it is deduced by the compiler
  - Thus, we say an expression has a type or belongs to a type

- Compiler assigns a bit representation to every typed value that is implementable in hardware
Types

- A type is a *grouping* of values, examples
  - Bit#(16) // 16-bit wide bit-vector (16 is a numeric type)
  - bit [15:0] // synonym for Bit#(16)
  - Bool // 1-bit value representing True and False
  - UInt#(32) // unsigned integers, 32 bits wide
  - Vector#(16,Int#(8)) // Vector of size 16 containing Int#(8)’s

- Every expression in a Bluespec program has a type; sometimes it is specified explicitly and sometimes it is deduced by the compiler
  - Thus, we say an expression has a type or belongs to a type

- Compiler assigns a bit representation to every typed value that is implementable in hardware
  - pack: converts a typed value into bits
  - unpack: converts bits into a desired type value
Parameterized types: #

- A type declaration can be parameterized by other types using the syntax `#`, for example
  - `Bit#(n)` represents n bits and can be instantiated by specifying a value of n
    
    Bit#(1), Bit#(32), Bit#(8), ...
Parameterized types: #

- A type declaration can be parameterized by other types using the syntax `#`, for example
  - Bit#(n) represents n bits and can be instantiated by specifying a value of n: Bit#(1), Bit#(32), Bit#(8), ...
  - Tuple2#(Integer, Integer) represents a pair of Integers
Parameterized types: 

- A type declaration can be parameterized by other types using the syntax `#`, for example:
  - `Bit#(n)` represents `n` bits and can be instantiated by specifying a value of `n`:
    - `Bit#(1), Bit#(32), Bit#(8), ...`
  - `Tuple2#(Integer, Integer)` represents a pair of Integers
  - `function` `Integer` `fname` `(Integer arg)` represents a function from Integers to Integers and is named `fname`
Parameterized types: #

- A type declaration can be parameterized by other types using the syntax `#`, for example:
  - Bit#(n) represents n bits and can be instantiated by specifying a value of n:
    - Bit#(1), Bit#(32), Bit#(8), ...
  - Tuple2#(Integer, Integer) represents a pair of Integers
  - function Integer fname (Integer arg) represents a function from Integers to Integers and is named fname

- A *type name* begins with a capital letter, except for a numeric type which is just a number:
  - Bool, Bit#(32), Int#(32), Integer, ...
Parameterized types: 

- A type declaration can be parameterized by other types using the syntax ‘#’, for example
  - Bit#(n) represents n bits and can be instantiated by specifying a value of n
    - Bit#(1), Bit#(32), Bit#(8), ...
  - Tuple2#(Integer, Integer) represents a pair of Integers
  - function Integer fname (Integer arg) represents a function from Integers to Integers and is named fname

- A type name begins with a capital letter, except for a numeric type which is just a number
  - Bool, Bit#(32), Int#(32), Integer, ...

- A type variable identifier always begins with a small letter
  - t, wordSize, n, ...
typedef Bit#(8) Byte;
Type synonyms

```plaintext
typedef Bit#(8) Byte;
typedef Bit#(32) Word;
```
Type synonyms

typedef Bit#(8) Byte;
typedef Bit#(32) Word;
typedef Tuple2#(a, a) Pair#(type a);
Type synonyms

```plaintext
typedef Bit#(8) Byte;
typedef Bit#(32) Word;
typedef Tuple2#(a,a) Pair#(type a);
typedef 32 DataSize;
```
Type synonyms

```cpp
typedef Bit#(8) Byte;
typedef Bit#(32) Word;
typedef Tuple2#(a,a) Pair#(type a);
typedef 32 DataSize;
typedef Bit#(DataSize) Data;
```
Type synonyms

typedef Bit#(8) Byte;
typedef Bit#(32) Word;
typedef Tuple2#(a,a) Pair#(type a);
typedef 32 DataSize;
typedef Bit#(DataSize) Data;
Enumerated types

- Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
Enumerated types

Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
  - A better way is to create a new type called Color:

    typedef enum {Red, Blue, Green} Color deriving(Bits, Eq);
Enumerated types

- Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
- A better way is to create a new type called Color:

  ```
typedef enum {Red, Blue, Green} Color deriving(Bits, Eq);
  ```
- Bluespec compiler automatically assigns a bit representation to the three colors and provides a function to test whether two colors are equal
Enumerated types

- Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
- A better way is to create a new type called Color:
  ```
 typedef enum {Red, Blue, Green} Color deriving(Bits, Eq);
  ```
- Bluespec compiler automatically assigns a bit representation to the three colors and provides a function to test whether two colors are equal
- If you do not use “deriving” then you will have to specify your own encoding and equality function
Enumerated types

- Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
- A better way is to create a new type called Color:

  ```
 typedef enum {Red, Blue, Green} Color deriving (Bits, Eq);
  ```

- Bluespec compiler automatically assigns a bit representation to the three colors and provides a function to test whether two colors are equal
- If you do not use “deriving” then you will have to specify your own encoding and equality function
Enumerated types

- Suppose we have a variable c whose values can represent three different colors
  - Declare the type of c to be Bit#(2) and adopt the convention that 00 represents Red, 01 Blue and 10 Green
- A better way is to create a new type called Color:
  
  ```
 typedef enum {Red, Blue, Green} Color deriving(Bits, Eq);
  ```
  
  Why is this way better?

- Bluespec compiler automatically assigns a bit representation to the three colors and provides a function to test whether two colors are equal
- If you do not use “deriving” then you will have to specify your own encoding and equality function

Types prevent us from mixing colors with raw bits
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
- If the type inference cannot be performed or the type declarations are inconsistent then the compiler complains.
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
- If the type inference cannot be performed or the type declarations are inconsistent then the compiler complains.

```mermaid
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
 let ab = ha(a, b);
 let abc = ha(ab[0], c_in);
 Bit#(2) c_out = ab[1] | abc[1];
 return {c_out, abc[0]};
endfunction
```
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
- If the type inference cannot be performed or the type declarations are inconsistent then the compiler complains.

```plaintext
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
 let ab = ha(a, b);
 let abc = ha(ab[0], c_in);
 Bit#(2) c_out = ab[1] | abc[1];
 return {c_out, abc[0]};
endfunction
```
Type declaration versus deduction

- The programmer writes down types of some expressions in a program and the compiler infers the types of the rest of expressions.
- If the type inference cannot be performed or the type declarations are inconsistent then the compiler complains.

```plaintext
function Bit#(2) fa(Bit#(1) a, Bit#(1) b, Bit#(1) c_in);
 let ab = ha(a, b);
 let abc = ha(ab[0], c_in);
 Bit#(2) c_out = ab[1] | abc[1];
 return {c_out, abc[0]};
endfunction
```

Type checking prevents lots of silly mistakes.
There are several subtle type errors in this program - now we will fix them one by one
Fixing the type errors

`valueOf(w)` versus `w`

- Each expression has a type and a value, and these two come from entirely disjoint worlds
Fixing the type errors

**valueOf(w) versus w**

- Each expression has a type and a value, and these two come from entirely disjoint worlds
- \( w \) in `Bit#(w)` is a numeric type variable and resides in the types world
Fixing the type errors

**valueOf(w) versus w**

- Each expression has a type and a value, and these two come from entirely disjoint worlds.
- \( w \) in `Bit#(w)` is a numeric type variable and resides in the types world.
- Sometimes we need to use values from the types world into actual computation. The function `valueOf` extracts the integer from a numeric
Fixing the type errors

`value0f(w)` versus `w`

- Each expression has a type and a value, and these two come from entirely disjoint worlds
- `w` in `Bit#(w)` is a numeric type variable and resides in the types world
- Sometimes we need to use values from the types world into actual computation. The function `value0f` extracts the integer from a numeric
  - Thus,
    - `i<w` is not type correct
    - `i<value0f(w)` is type correct
Fixing the type errors

TAdd\#(w,1) versus w+1

- Sometimes we need to perform operations in the types world that are very similar to the operations in the value world
  - Examples: Addition, Multiplication, Logarithm base 2
Fixing the type errors

TAdd#(w,1) versus w+1

- Sometimes we need to perform operations in the types world that are very similar to the operations in the value world
  - Examples: Addition, Multiplication, Logarithm base 2
- We define a few special operators in the types world for such operations
  - Examples: TAdd#(m,n), TMul#(m,n), ...
Fixing the type errors

**TAdd#(w,1) versus w+1**

- Sometimes we need to perform operations in the types world that are very similar to the operations in the value world
  - Examples: Addition, Multiplication, Logarithm base 2

- We define a few special operators in the types world for such operations
  - Examples: TAdd#(m,n), TMul#(m,n), ...
  - Thus,
    - Bit#(w+1) is not type correct
    - Bit#(TAdd#(w,1)) is type correct
A w-bit Ripple-Carry Adder

```plaintext
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

Bit#(w) s = 0;
Bit#(TAdd#(w,1)) c;
c[0] = c0;
let valw = valueOf(w);
for (Integer i=0; i<valw; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
end
return {c[valw], s};
endfunction
```


A $w$-bit Ripple-Carry Adder

corrected

```haskell
function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y,
 Bit#(1) c0);
 Bit#(w) s = 0;
 Bit#(TAdd#(w,1)) c;
 c[0] = c0;
 let valw = valueOf(w);
 for (Integer i=0; i<valw; i=i+1) begin
 let cs = fa(x[i], y[i], c[i]);
 c[i+1] = cs[1];
 s[i] = cs[0];
 end
 return {c[valw], s};
endfunction
```

**types world equivalent of w+1**
function Bit#(TAdd#(w, 1)) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

Bit#(w) s = 0;
Bit#(TAdd#(w, 1)) c;
c[0] = c0;
let valw = valueOf(w);
for (Integer i = 0; i < valw; i = i + 1) begin
    let cs = fa(x[i], y[i], c[i]);
    c[i + 1] = cs[1];
    s[i] = cs[0];
end
return {c[valw], s};
endfunction

Lifting a type into the value world
A w-bit Ripple-Carry Adder

corrected

function Bit#(TAdd#(w,1)) addN(Bit#(w) x, Bit#(w) y, Bit#(1) c0);

Bit#(w) s = 0;
Bit#(TAdd#(w,1)) c;
c[0] = c0;
let valw = valueOf(w);
for (Integer i=0; i<valw; i=i+1) begin
    let cs = fa(x[i], y[i], c[i]);
    c[i+1] = cs[1];
    s[i] = cs[0];
end
return {c[valw],s};
endfunction
Multiplication by repeated addition

b Multiplicand  1101  (13)  a Multiplier  *  1011  (11)

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier

\[
\begin{align*}
tp & \quad 0000 \\
m0 & + 1101 \\
\hline \\
tp & \quad 01101 \\
m1 & + 1101 \\
\hline \\
tp & \quad 100111 \\
m2 & + 0000 \\
\hline \\
tp & \quad 0100111 \\
m3 & + 1101 \\
\hline \\
tp & \quad 10001111  (143)
\end{align*}
\]
Multiplication by repeated addition

\[ \begin{array}{c}
\text{b Multiplicand} & 1101 \quad \text{(13)} \\
\text{a Multiplier} & 1011 \quad \text{(11)} \\
\end{array} \]

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier

\[ \text{mi} = (a[i]==0) ? 0 : b; \]

\[ \begin{array}{c}
\text{tp} & 0000 \\
\text{m0} & + 1101 \\
\text{tp} & 01101 \\
\text{m1} & + 1101 \\
\text{tp} & 100111 \\
\text{m2} & + 0000 \\
\text{tp} & 0100111 \\
\text{m3} & + 1101 \\
\text{tp} & 10001111 \quad \text{(143)} \\
\end{array} \]
Multiplication by repeated addition

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier.

\[
\text{mi} = (a[i]==0) ? 0 : b;
\]

We also shift the result by one position at every step.
Multiplication by repeated addition

\[ b \text{ Multiplicand} \times a \text{ Multiplier} \]

\[ 1101 \quad (13) \]
\[ \times \quad 1011 \quad (11) \]

\[
\begin{array}{c}
\text{tp} \\
\text{m0} \\
\text{tp} \\
\text{m1} \\
\text{tp} \\
\text{m2} \\
\text{tp} \\
\text{m3} \\
\text{tp}
\end{array}
\begin{array}{c}
0000 \\
+ 1101 \\
01101 \\
+ 1101 \\
100111 \\
+ 0000 \\
0100111 \\
+ 1101 \\
10001111 \quad (143)
\end{array}
\]

At each step we add either 1101 or 0 to the result depending upon a bit in the multiplier

\[ m_i = (a[i]==0)? 0 : b; \]

We also shift the result by one position at every step

Notice, the first addition is unnecessary because it simply yields \( m_0 \).
Multiplication by repeated addition circuit

b Multiplicand 1101 (13)
a Multiplier   * 1011 (11)

\[
\begin{array}{c}
\text{tp} \\
m0 \\
+ \\
\text{tp} \\
m1 \\
+ \\
\text{tp} \\
m2 \\
+ \\
\text{tp} \\
m3 \\
+ \\
\text{tp}
\end{array}
\begin{array}{c}
0000 \\
1101 \\
01101 \\
1101 \\
100111 \\
0000 \\
0100111 \\
1101 \\
10001111
\end{array}
\]

\[m_i = (a[i]==0)? 0 : b;\]
Multiplication by repeated addition circuit

b Multiplicand  1101  (13)
a Multiplier       * 1011  (11)

\[
\begin{align*}
tp & \quad 0000 \\
m0 & \quad + \quad 1101 \\
\hline
tp & \quad 01101 \\
m1 & \quad + \quad 1101 \\
\hline
tp & \quad 100111 \\
m2 & \quad + \quad 0000 \\
\hline
tp & \quad 0100111 \\
m3 & \quad + \quad 1101 \\
\hline
tp & \quad 10001111  \quad (143)
\end{align*}
\]

\[m_i = (a[i]==0)? 0 : b;\]
Multiplication by repeated addition circuit

b Multiplicand  1101  (13)
a Multiplier *  1011  (11)

\[
\begin{align*}
\text{tp} & \quad 0000 \\
\text{m0} & \quad + \quad 1101 \\
\text{tp} & \quad 01101 \\
\text{m1} & \quad + \quad 1101 \\
\text{tp} & \quad 100111 \\
\text{m2} & \quad + \quad 0000 \\
\text{tp} & \quad 0100111 \\
\text{m3} & \quad + \quad 1101 \\
\text{tp} & \quad 10001111  \quad (143)
\end{align*}
\]

\[ m_i = (a[i]==0)? 0 : b; \]
Multiplication by repeated addition circuit

\[ \text{b Multiplicand} \quad 1101 \quad (13) \]
\[ \text{a Multiplier} \quad \times \quad 1011 \quad (11) \]

\[ \begin{array}{c}
\text{tp} \\
0000
\end{array} \]
\[ \text{m0} \\
+ \quad 1101
\]
\[ \begin{array}{c}
\text{tp} \\
01101
\end{array} \]
\[ \text{m1} \\
+ \quad 1101
\]
\[ \begin{array}{c}
\text{tp} \\
100111
\end{array} \]
\[ \text{m2} \\
+ \quad 0000
\]
\[ \begin{array}{c}
\text{tp} \\
0100111
\end{array} \]
\[ \text{m3} \\
+ \quad 1101
\]
\[ \begin{array}{c}
\text{tp} \\
10001111 \quad (143)
\end{array} \]

\[ m_i = (a[i]==0)? 0 : b; \]
Multiplication by repeated addition circuit

b Multiplicand \[1101\] (13)
a Multiplier \[1011\] (11)

\[
\begin{array}{c}
tp \\
m0 \\
+ \quad 1101 \\
\hline
0000 \\
m1 \\
+ \quad 1101 \\
\hline
01101 \\
m2 \\
+ \quad 1101 \\
\hline
100111 \\
m3 \\
+ \quad 0000 \\
\hline
0100111 \\
m0 \\
+ \quad 1101 \\
\hline
10001111 (143)
\end{array}
\]

\[m_i = (a[i]==0)? 0 : b;\]
Multiplication by repeated addition circuit

b Multiplicand  1101  (13)
a Multiplier  *  1011  (11)

\[
\begin{align*}
&b \\
tp &0000 \\
m0 &\quad + &1101 \\
tp &\quad 01101 \\
m1 &\quad + &1101 \\
tp &\quad 100111 \\
m2 &\quad + &0000 \\
tp &\quad 0100111 \\
m3 &\quad + &1101 \\
tp &\quad 10001111  \quad (143)
\end{align*}
\]

\[m_i = (a[i]==0)? 0 : b;\]
Multiplication by repeated addition circuit

b Multiplicand: 1101 (13)
a Multiplier: * 1011 (11)

\[
\begin{align*}
\text{tp} & \\
\text{m0} & \quad 0000 \\
+ & \quad 1101 \\
\text{tp} & \quad 01101 \\
\text{m1} & \quad + \quad 1101 \\
\text{tp} & \quad 100111 \\
\text{m2} & \quad + \quad 0000 \\
\text{tp} & \quad 0100111 \\
\text{m3} & \quad + \quad 1101 \\
\text{tp} & \quad 10001111 \quad (143)
\end{align*}
\]

\[m_i = (a[i]==0)? 0 : b;\]
Multiplication by repeated addition circuit

b Multiplicand  1101 (13)
a Multiplier    *  1011 (11)

\[
\begin{array}{c}
\text{tp} & \text{m0} & 0000 \\
\text{tp} & + & 1101 \\
\text{tp} & \text{m1} & 01101 \\
\text{tp} & + & 1101 \\
\text{tp} & \text{m2} & 100111 \\
\text{tp} & + & 0000 \\
\text{tp} & \text{m3} & 0100111 \\
\text{tp} & + & 1101 \\
\text{tp} & 10001111 (143)
\end{array}
\]

\[m_i = (a[i]==0) ? 0 : b;\]
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
    Bit#(32) tp = 0;
    Bit#(32) prod = 0;
    for(Integer i = 0; i < 32; i = i+1)
    begin
        Bit#(32) m = (a[i]==0)? 0 : b;
        Bit#(33) sum = add32(m,tp,0);
        prod[i] = sum[0];
        tp = sum[32:1];
    end
    return {tp,prod};
endfunction
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
  Bit#(32) tp = 0;
  Bit#(32) prod = 0;
  for(Integer i = 0; i < 32; i = i+1)
    begin
      Bit#(32) m   = (a[i]==0)? 0 : b;
      Bit#(33) sum = add32(m,tp,0);
      prod[i]      = sum[0];
      tp           = sum[32:1];
    end
  return {tp,prod};
endfunction
Combinational 32-bit multiply

```verilog
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
 Bit#(32) tp = 0;
 Bit#(32) prod = 0;
 for (Integer i = 0; i < 32; i = i+1)
 begin
 Bit#(32) m = (a[i]==0)? 0 : b;
 Bit#(33) sum = add32(m,tp,0);
 prod[i] = sum[0];
 tp = sum[32:1];
 end
 return {tp,prod};
endfunction
```

This circuit uses 32 add32 circuits

Lot of gates!
Combinational 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
    Bit#(32) tp = 0;
    Bit#(32) prod = 0;
    for (Integer i = 0; i < 32; i = i+1)
        begin
            Bit#(32) m = (a[i]==0)? 0 : b;
            Bit#(33) sum = add32(m,tp,0);
            prod[i] = sum[0];
            tp = sum[32:1];
        end
    return {tp,prod};
endfunction

This circuit uses 32 add32 circuits

Lot of gates!
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
    Bit#(32) tp = 0;
    Bit#(32) prod = 0;
    for (Integer i = 0; i < 32; i = i+1)
        begin
            Bit#(32) m = (a[i]==0)? 0 : b;
            Bit#(33) sum = add32(m,tp,0);
            prod[i] = sum[0];
            tp = sum[32:1];
        end
    return {tp,prod};
endfunction
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
    Bit#(32) tp = 0;
    Bit#(32) prod = 0;
    for (Integer i = 0; i < 32; i = i+1)
    begin
        Bit#(32) m = (a[i]==0)? 0 : b;
        Bit#(33) sum = add32(m,tp,0);
        prod[i] = sum[0];
        tp = sum[32:1];
    end
    return {tp,prod};
endfunction

Long chains of gates
■ 32-bit multiply has 32 ripple carry adders in sequence!
Analysis of 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
    Bit#(32) tp = 0;
    Bit#(32) prod = 0;
    for (Integer i = 0; i < 32; i = i+1)
        begin
            Bit#(32) m = (a[i]==0)? 0 : b;
            Bit#(33) sum = add32(m,tp,0);
            prod[i] = sum[0];
            tp = sum[32:1];
        end
    return {tp,prod};
endfunction

Long chains of gates
- 32-bit multiply has 32 ripple carry adders in sequence!
- 32-bit ripple carry adder has a 32-long chain of gate
Analysis of 32-bit multiply

```haskell
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
 Bit#(32) tp = 0;
 Bit#(32) prod = 0;
 for(Integer i = 0; i < 32; i = i+1)
 begin
 Bit#(32) m = (a[i]==0)? 0 : b;
 Bit#(33) sum = add32(m,tp,0);
 prod[i] = sum[0];
 tp = sum[32:1];
 end
 return {tp,prod};
endfunction
```

Can we design a faster adder?

Long chains of gates
- 32-bit multiply has 32 ripple carry adders in sequence!
- 32-bit ripple carry adder has a 32-long chain of gates
Analysis of 32-bit multiply

```
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
 Bit#(32) tp = 0;
 Bit#(32) prod = 0;
 for (Integer i = 0; i < 32; i = i+1)
 begin
 Bit#(32) m = (a[i]==0)? 0 : b;
 Bit#(33) sum = add32(m,tp,0);
 prod[i] = sum[0];
 tp = sum[32:1];
 end
 return {tp,prod};
endfunction
```

Can we design a faster adder?  
- yes!

Long chains of gates
- 32-bit multiply has 32 ripple carry adders in sequence!
- 32-bit ripple carry adder has a 32-long chain of gate
Analysis of 32-bit multiply

```plaintext
function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
 Bit#(32) tp = 0;
 Bit#(32) prod = 0;
 for (Integer i = 0; i < 32; i = i+1)
 begin
 Bit#(32) m = (a[i]==0)? 0 : b;
 Bit#(33) sum = add32(m,tp,0);
 prod[i] = sum[0];
 tp = sum[32:1];
 end
 return {tp,prod};
endfunction
```

Can we design a faster adder?
  ■ yes!

Can we reuse the adder circuit and reduce the size of the multiplier
  ■ stay tuned ...

Long chains of gates
  ■ 32-bit multiply has 32 ripple carry adders in sequence!
  ■ 32-bit ripple carry adder has a 32-long chain of gate
Analysis of 32-bit multiply

function Bit#(64) mul32(Bit#(32) a, Bit#(32) b);
  Bit#(32) tp = 0;
  Bit#(32) prod = 0;
  for (Integer i = 0; i < 32; i = i+1)
  begin
    Bit#(32) m = (a[i] == 0)? 0 : b;
    Bit#(33) sum = add32(m, tp, 0);
    prod[i] = sum[0];
    tp = sum[32:1];
  end
  return {tp, prod};
endfunction

Can we design a faster adder?
  ■ yes!
Can we reuse the adder circuit and reduce the size of the multiplier
  ■ stay tuned ...

Long chains of gates
  ■ 32-bit multiply has 32 ripple carry adders in sequence!
  ■ 32-bit ripple carry adder has a 32-long chain of gate

Take home problem: What is the propagation delay of mul32 in terms of FA delays?
Takeaway

- Once we define a combinational circuit, we can use it repeatedly to build larger circuits
Takeaway

- Once we define a combinational circuit, we can use it repeatedly to build larger circuits.
- Bluespec compiler, because of the type signatures of functions, prevents us from connecting functions and gates in obviously illegal ways.
Takeaway

- Once we define a combinational circuit, we can use it repeatedly to build larger circuits.
- Bluespec compiler, because of the type signatures of functions, prevents us from connecting functions and gates in obviously illegal ways.
- We can write parameterized circuits in Bluespec, for example an n-bit adder. Once n is specified, the correct circuit is automatically generated.
Takeaway

- Once we define a combinational circuit, we can use it repeatedly to build larger circuits.
- Bluespec compiler, because of the type signatures of functions, prevents us from connecting functions and gates in obviously illegal ways.
- We can write parameterized circuits in Bluespec, for example an n-bit adder. Once n is specified, the correct circuit is automatically generated.
- We can use loop constructs and functions to express combinational circuits, but all loops are unfolded and functions are in-lined during the compilation phase.
Takeaway

- Once we define a combinational circuit, we can use it repeatedly to build larger circuits.
- Bluespec compiler, because of the type signatures of functions, prevents us from connecting functions and gates in obviously illegal ways.
- We can write parameterized circuits in Bluespec, for example an n-bit adder. Once n is specified, the correct circuit is automatically generated.
- We can use loop constructs and functions to express combinational circuits, but all loops are unfolded and functions are in-lined during the compilation phase.

The best way to learn about types is to try writing a few expressions and feeding them to the compiler.