Please enter your name, Athena login name, and recitation section above. Enter your answers in the spaces provided below. Show your work for partial credit. You can use the extra white space and the backs of the pages for scratch work.

Problem 1. Binary Arithmetic (10 points)

(A) (4 points) What is ~(0x5A) ^ 0x3D, where ~ is bitwise NOT and ^ is bitwise XOR? Provide your result in both binary and hexadecimal.

Result in binary (0b): __1001 1000________

Result in hexadecimal (0x): __98________________

(B) (4 points) What is 15 in 8-bit 2’s complement notation? What is –22 in 8-bit 2’s complement notation? Show how to compute 15–22 using 2’s complement addition. What is the result in 8-bit 2’s complement notation?

15 in 8-bit 2’s complement notation (0b): __0000 1111________

–22 in 8-bit 2’s complement notation (0b): __1110 1010________

15–22 in 8-bit 2’s complement notation (show your work) (0b): __1111 1001________

(C) (2 points) What range of numbers encoded using two’s complement representation can be expressed using 5 bits? Provide your answer in decimal.

Smallest 5-bit two’s complement number (in decimal): __-16________

Largest 5-bit two’s complement number (in decimal): __15________
Problem 2. Boolean Expressions (12 points)

(A) (6 points) Simplify the following Boolean expressions by finding a minimal sum-of-products expression for each one. (*Note:* These expressions can be reduced into a minimal SOP by repeatedly applying the Boolean algebra properties we saw in lecture.)

1. \((a + b \cdot \overline{c}) \cdot d + c = \overline{a} \cdot \overline{b} \cdot d + c\)

2. \(a \cdot (b + c)(c + a) = a \cdot \overline{b} \cdot \overline{c}\)

(B) (6 points) There are Boolean expressions for which no assignment of values to variables can produce True (e.g., \(a \cdot \overline{a}\)). These Boolean expressions are said to be *non-satisfiable.*

Are the following Boolean expressions satisfiable? If the expression is satisfiable, give an assignment to variables that makes the expression evaluate to True. If the expression is non-satisfiable, explain why.

1. \((\overline{x} + y\overline{z}) \cdot (\overline{y}x + z) \cdot (\overline{z}y + x)\)
 \[\overline{x}z\]
 \[\overline{xz}\overline{y} + \overline{xz}x = 0 \Rightarrow\text{Unsatisfiable}\]

2. \((\overline{x} + y\overline{z}) \cdot (\overline{y}x + z) \cdot (\overline{z}y + x) + (\overline{x} + yz) \cdot (\overline{y}x + z) \cdot (\overline{z}y + x)\)
 \[0 \text{ (same as above)}\]
 \[xyz\]
 Satisfiable with \(x=1\) \(y=1\) \(z=1\)
Problem 3. Static Discipline (16 points)

The Q-module shown to the right has two inputs carrying voltages \(V_A \) and \(V_B \) and a single output carrying \(V_C \). The output \(V_C \) is 1 volt if the sum of the input voltages, \(V_A + V_B \), has been more that 4 volts for at least 10 ns; it will be 5 volts if \(V_A + V_B \) has been less than 3 volts for at least 10 ns; and otherwise is at some undetermined voltage between 0 and 5 volts.

To summarize: after inputs have been stable for 10 ns,

\[
V_C = \begin{cases}
1 \text{ volt} & \text{if } V_A + V_B > 4 \text{ volts} \\
5 \text{ volts} & \text{if } V_A + V_B < 3 \text{ volts} \\
0 \leq ??? \leq 5 \text{ volts} & \text{otherwise}
\end{cases}
\]

You may assume that no negative voltages are used in the circuits of this problem.

In this problem, you will explore the possibility of using the Q-module as the basis for a new family of logic devices. To this end, we need a convention for representing logic values (0 and 1) as voltages. This convention should yield acceptably large noise margins. In particular, it should maximize noise immunity, defined as the width of the smaller of the two noise margins.

(A) (2 points) Suppose constant voltages are applied to the \(V_A \) and \(V_B \) input terminals of a Q-module, and an output voltage of 5 volts is measured at \(V_C \) after 20 ns. Assuming the Q-module obeys the above specification, what can you conclude about the sum \(V_A + V_B \) of the input voltages? Choose the best answer.

C1: \(V_A + V_B < 3 \) volts

C2: \(V_A + V_B \leq 4 \) volts

C3: None of the above.

Best conclusion about \(V_A + V_B \) (circle one): C1 .. C2 .. C3

\(V_C \) is 5 volts when \(V_A + V_B < 3 \) volts, and may be 5 volts when 3 volts < \(V_A + V_B \leq 4 \) volts
You begin by exploring configurations of the Q-module that will perform as an inverter. You consider two different inverter proposals:

(B) (8 points) Select the proposal that gives the best noise immunity, and specify parameters for an appropriate logic mapping and the resulting noise immunity.

Best proposal (1 or 2): __1___

Values for V_{OL}: __1V__; V_{IL}: __3V__; V_{IH}: __4V__; V_{OH}: __5V__

Noise immunity: __1V__

Next, you consider logic mappings that allow using a single Q-module directly as a 2-input combinational device, as depicted to the right. Your goal is to find a set of logic mapping parameters for which the 2-input circuit at the right computes a useful logic function, and does so with acceptable noise margins.

(C) (3 points) Consider a logic convention for which a Q-module can serve as a logic device computing an interesting (non-constant) function of its inputs and that maximizes the noise immunity. Specify the resulting noise immunity.

Noise immunity: __0.5__volts

(D) (3 points) Identify the function computed by the single Q-module given the above convention, by specifying a Boolean expression for C in terms of inputs A and B.

Boolean expression for computed function: _______ $A + \overline{B}$ (NOR) _______
Problem 4. Combinational Logic (30 points)

(A) (5 points) The following BSV function f performs a basic operation using a and b. We want f_2 to implement the same function as f. Fill in the blank in f_2 to make the two functions equivalent. Use a single expression. Assume n is a power of 2.

```hs
// TLog#(n) is the log base 2 of n
function Bit#(1) f(Bit#(n) a, Bit#(TLog#(n)) b);
    Bit#(n) x = a;
    for (Integer i = 0 ; i < valueOf(TLog#(n)) ; i = i+1)
        // (2**i) is 2 to the ith power
        x = (b[i] == 1) ? x >> (2**i) : x;
    return x[0];
endfunction

function Bit#(1) f2(Bit#(n) a, Bit#(TLog#(n)) b);
    return ____a[b]____; // or (a >> b)[0]
endfunction
```
(B) (6 points) Write the truth table for the combinational device described by the function below.

```verilog
function Bit#(2) f(Bit#(1) a, Bit#(1) b, Bit#(1) c);
    Bit#(8) x = 8'hB7; // hex value 0xB7
    Bit#(2) ret = 1;
    if (c == 1) begin
        x = x + 1;
    end
    case ({a, b})
        1: ret = x[1:0];
        2: ret = x[3:2];
        3: ret = x[7:6] ^ 2'b11;
    endcase
    return ret;
endfunction
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ret[1]</th>
<th>ret[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
(C) (5 points) The following BSV function g performs a specific arithmetic operation on n-bit operands a and b. We want the function g_2 to implement g in a single line of code. Fill in the blank with an expression of the form “a operation b” to make g_2 equivalent to g.

```bsv
function Bit#(n) g(Bit#(n) a, Bit#(n) b);
Bit#(TAdd#(n,1)) c = 1; // note initial value
Bit#(n) ret = 0;
for (Integer i = 0 ; i < valueOf(n) ; i = i+1) begin
    ret[i] = a[i] ^ ~b[i] ^ c[i];
    c[i+1] = (a[i] & ~b[i]) | (a[i] & c[i]) | (~b[i] & c[i]);
end
return ret;
endfunction

function Bit#(n) g2(Bit#(n) a, Bit#(n) b);

    return ___a - b____;
endfunction
```

(D) (6 points) For $n = 2$, manually compile the BSV function g above into a combinational circuit. Please draw its logic diagram. You can use inverters, AND, OR, XOR, NAND, and NOR gates, as well as multiplexers. Please label the inputs and outputs bit by bit ($a[0]$, $a[1]$, $b[0]$, $b[1]$, $ret[0]$, and $ret[1]$). You do not need to optimize or simplify the circuit.

![Logic Diagram](image-url)
(E) (8 points) Show that 1-bit 2-to-1 muxes can be used to implement any combinational circuit by implementing an inverter, an AND gate, and an OR gate using only 1-bit 2-to-1 muxes. You may tie inputs to 1 or 0 if necessary, and may use one or multiple muxes. Clearly label all inputs and outputs.

\[Z = A \cdot S + B \cdot \overline{S} \]

Logic diagram of inverter implementation using 2-input mux:

Logic diagram of AND gate implementation using 2-input mux:

Logic diagram of OR gate implementation using 2-input mux:
Problem 5. Sequential Logic Timing (12 points)

(A) (4 points) Find the propagation delay (t_{PD}) and contamination delay (t_{CD}) of the circuit shown below, using the t_{CD} and t_{PD} information for the gate components shown in the table below.

<table>
<thead>
<tr>
<th>Gate</th>
<th>t_{CD}</th>
<th>t_{PD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>INV</td>
<td>0.1ns</td>
<td>1.0ns</td>
</tr>
<tr>
<td>NAND2</td>
<td>0.2ns</td>
<td>1.5ns</td>
</tr>
<tr>
<td>NAND3</td>
<td>0.3ns</td>
<td>1.8ns</td>
</tr>
<tr>
<td>XOR2</td>
<td>0.6ns</td>
<td>2.5ns</td>
</tr>
</tbody>
</table>

$t_{CD} = \boxed{0.5\text{ns}}$

$t_{PD} = \boxed{5\text{ns}}$

(B) (8 points) The circuit above implements a full subtractor (FS), which, similar to a full adder, computes $X - Y - \text{Bin}$ in two’s complement. You combine two FS circuits as shown below to implement a two-bit self-decrementing counter.

The table below shows the timing specifications for the D registers and FS circuit (not the same implementation as above!). Find the maximum value for the D register’s hold time, t_{HOLD}, and the minimum clock cycle period, t_{CLK}, for which the circuit operates correctly.

<table>
<thead>
<tr>
<th>D reg</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{CD}</td>
<td>0.2ns</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>0.3ns</td>
</tr>
<tr>
<td>t_{SETUP}</td>
<td>1.2ns</td>
</tr>
<tr>
<td>t_{HOLD}</td>
<td>???</td>
</tr>
</tbody>
</table>

maximum value for t_{HOLD}: \boxed{0.3\text{ns}}

minimum value for t_{CLK}: \boxed{9.7\text{ns}}
Problem 6. Sequential Logic in BSV (20 points)

The following code implements a simple sequential circuit as a module that computes a function over a series of steps. Read the code and answer the questions about it below.

```verilog
interface Seq;
    method Action start(Bit#(32) a);
    method Bit#(32) getI;
    method Bit#(32) getY;
    method Action clear;
endinterface

module mkSeq(Seq);
    Reg#(Bit#(32)) i <- mkReg(0);
    Reg#(Bit#(32)) y <- mkReg(0);
    Reg#(Bit#(32)) x <- mkReg(0);

    rule computeStep if (x > 1);
        i <= i+1;
        if (x > y) y <= x;
        if (x[0] == 1) x <= x + x + x + 1;
        else x <= x >> 1;
    endrule

    method Action start(Bit#(32) a) if (x == 0);
        i <= 0;
        y <= a;
        x <= a;
    endmethod

    method Bit#(32) getI if (x == 1);
        return i;
    endmethod

    method Bit#(32) getY if (x == 1);
        return y;
    endmethod

    method Action clear if (x == 1);
        x <= 0;
    endmethod
endmodule
```

(A) (3 points) If at the beginning of `computeStep` the values in the registers are i = 17, y = 25, and x = 11, what are the values after rule `computeStep` runs once?

1. y = 25
2. x = 34
(B) (5 points) If \texttt{start} is called with value \texttt{a = 10}, what will the output of \texttt{getI()} and \texttt{getY()} be when it is ready?

1. Return value of \texttt{getI()} = 6

2. Return value of \texttt{getY()} = 16

(C) (5 points) We have verified that for all possible 32-bit values of \texttt{a} except 0, when the module is started with \texttt{start(a)}, the \texttt{computeStep} rule eventually writes 1 to \texttt{x} and results become ready.

Assume that \texttt{a} is a nonzero value. Let’s denote the sequence of \texttt{k} values that \texttt{x} goes through as \([x_0, x_1, ..., x_{k-1}]\). Note that \(x_0 = a\) (the initial value written by \texttt{start}), and \(x_{k-1} = 1\) (the final value written by \texttt{computeStep} after some number of cycles).

Write expressions valid for all \(a > 0\) for the return values of \texttt{getI()} and \texttt{getY()} as a function of \(k\) and \([x_0, x_1, ..., x_{k-1}]\).

1. Expression for \texttt{getI()} = \(k - 1\)

2. Expression for \texttt{getY()} = \(\max([x_0, x_1, ..., x_{k-1}])\)

(D) (3 points) Suppose we modify the \texttt{computeStep} rule as shown below. Does this change the functionality of the module?

Original code

\begin{verbatim}
rule computeStep if (x > 1);
 i <= i+1;
 if (x > y) y <= x;
 if (x[0]==1) x <= x + x + x + 1;
 else x <= x >> 1;
endrule
\end{verbatim}

Modified code

\begin{verbatim}
rule computeStep if (x > 1);
 i <= i+1;
 if (x[0]==1) x <= x + x + x + 1;
 else x <= x >> 1;
endrule
\end{verbatim}

\begin{verbatim}
if (x > y) y <= x;
endrule
\end{verbatim}

Does this change the functionality of the module? (circle one) Yes ... No ... Can’t tell
(E) (4 points) Draw the wires for the sequential-machine implementation of mkSeq. The Seq interface is shown again below for your convenience. Include and name all input and output wires: arguments, results, enable signals, and ready signals.

```interface Seq;
   method Action start(Bit#(32) a);
   method Bit#(32) getI;
   method Bit#(32) getY;
   method Action clear;
endinterface```

END OF PRACTICE QUIZ 1!