Combinational Logic
and Introduction to Minispec
Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter
Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter

- Learn how to implement combinational circuits in the Minispec hardware description language (HDL)
 - Design each combinational circuit as a function, which can be simulated or synthesized into gates
Building a Combinational Adder

- Goal: Build a circuit that takes two n-bit inputs a and b and produces (n+1)-bit output $s = a + b$
Building a Combinational Adder

- Goal: Build a circuit that takes two n-bit inputs a and b and produces (n+1)-bit output $s = a + b$

![Diagram of n-bit adder with inputs $a_{n-1} a_0$ and $b_{n-1} b_0$, and outputs $s_{n} s_0$.]
Building a Combinational Adder

- Goal: Build a circuit that takes two n-bit inputs \(a\) and \(b\) and produces (n+1)-bit output \(s = a + b\)

- Approach: Implement the binary addition algorithm we have seen (called the standard algorithm)

\[\begin{array}{c}
a_n-1 \quad a_0 \quad b_n-1 \quad b_0 \\
\downarrow \quad \cdots \quad \downarrow \quad \cdots \\
n\text{-bit adder} \\
\downarrow \quad \cdots \\
s_n \quad s_0
\end{array}\]

\[\begin{array}{c}
a_n \downarrow n \\
\quad \downarrow \\
b_n \downarrow n \\
\quad \downarrow \\
n+1 \text{ bit adder} \\
\quad \downarrow \\
s \quad \text{carry}
\end{array}\]

\[\begin{array}{c}
1110 \\
1110 \\
+ 0111 \\
\hline
10101
\end{array}\]
Formalizing the Standard Algorithm

carry

\[
\begin{array}{c}
1110 \\
1110 \\
+ 0111 \\
\hline 10101 \\
\end{array}
\quad \rightarrow \quad \begin{array}{c}
c_4c_3c_2c_10 \\
a_3a_2a_1a_0 \\
+ b_3b_2b_1b_0 \\
\hline s_4s_3s_2s_1s_0 \\
\end{array}
\]
Formalizing the Standard Algorithm

- The i^{th} step of each addition
The i^{th} step of each addition
- Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
The i^{th} step of each addition

- Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
- Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
- The 2-bit output $c_{i+1}s_i$ is the binary sum of the three inputs
Formalizing the Standard Algorithm

- The \(i^{th}\) step of each addition
 - Takes three 1-bit inputs: \(a_i, b_i, c_i\) (carry-in)
 - Produces two 1-bit outputs: \(s_i, c_{i+1}\) (carry-out)
 - The 2-bit output \(c_{i+1}s_i\) is the binary sum of the three inputs

Can you build a circuit that performs a single step with what you’ve learned so far?
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: a, b, and carry-in
 - Produces a sum bit and a carry-out bit
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: \(a\), \(b\), and \(\text{carry-in}\)
 - Produces a \textit{sum} bit and a \textit{carry-out} bit

- Then, cascade FAs to perform binary addition
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: a, b, and carry-in
 - Produces a sum bit and a carry-out bit

- Then, cascade FAs to perform binary addition

- Result: A ripple-carry adder (simple but slow)
Deriving the Full Adder

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_{in}</th>
<th>c_{out}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

\[s = \]
\[c_{out} = \]
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_in</th>
<th>c_out</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

\[
s = \begin{cases}
1 & \text{if } a \oplus b \oplus c_{\text{in}} = 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
c_{\text{out}} = \begin{cases}
1 & \text{if } a \oplus b + c_{\text{in}} = 1 \\
0 & \text{otherwise}
\end{cases}
\]
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_{in}</th>
<th>c_{out}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

\[s = a \oplus b \oplus c_{in} \]

\[c_{out} = \]
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_{in}</th>
<th>c_{out}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

- \(s = a \oplus b \oplus c_{in} \)
- \(c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \)
Describing a 32-bit Adder
alternatives

- Truth table with 2^{64} rows and 33 columns
Describing a 32-bit Adder
alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
Describing a 32-bit Adder alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences

 $s_k = a_k \oplus b_k \oplus c_k$

 $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ \[\begin{array}{c}
 0 \leq k \leq 31
\end{array}\]
Describing a 32-bit Adder
alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k \quad 0 \leq k \leq 31$
- Circuit diagrams: tedious to draw, error-prone
Describing a 32-bit Adder alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone
Describing a 32-bit Adder
alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
 \[\begin{align*}
 &0 \leq k \leq 31
\end{align*} \]
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
Describing a 32-bit Adder

alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
Describing a 32-bit Adder alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
Describing a 32-bit Adder

alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
Describing a 32-bit Adder alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.)
Introduction to Minispec

A simple HDL based on Bluespec
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```plaintext
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```plaintext
function Bool inv(Boolean x);
    Boolean result = !x;
    return result;
endfunction
```

Function name
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```plaintext
function Bool inv(Bool x);
  Bool result = !x;
  return result;
endfunction
```

Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```plaintext
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```

- Return type
- Function name
- Input arguments
- Statement(s), including a return statement
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions

```
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```

- All values have a fixed type, which is known statically (e.g., result is of type Bool)
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions.

```
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```

- All values have a fixed type, which is known statically (e.g., result is of type Bool).
- Note: Types Start With An Uppercase Letter, variable and function names are lowercase.
Values of type `bool` can be `True` or `False`.

`bool` supports Boolean and comparison operations:

```plaintext
bool a = True;
bool b = False;

bool x = !a;        // False since a == True
bool y = a && b;    // False since b == False
bool z = a || b;    // True since a == True

bool n = a != b;    // True; equivalent to XOR
bool e = a == b;    // False; equivalent to XNOR
```
Bool Type and Operations

- Values of type Bool can be True or False
- Bool supports Boolean and comparison operations:

```plaintext
Bool a = True;
Bool b = False;

Bool x = !a;      // False since a == True
Bool y = a && b;  // False since b == False
Bool z = a || b;  // True since a == True

Bool n = a != b;  // True; equivalent to XOR
Bool e = a == b;  // False; equivalent to XNOR
```

- Bool is the simplest type, but working with many single-bit values is tedious
 - Need a type that represents multi-bit values!
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```
Bit#(4) a = 4'b0011; // 4-bit binary 3
Bit#(4) b = 4'b0101; // 4-bit binary 5
Bit#(4) x = ~a;     // 4'b1100
Bit#(4) y = a & b;  // 4'b0001
Bit#(4) z = a ^ b;  // 4'b0110
```
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

 Bit#(4) a = 4'b0011; // 4-bit binary 3
 Bit#(4) b = 4'b0101; // 4-bit binary 5
 Bit#(4) x = ~a; // 4'b1100
 Bit#(4) y = a & b; // 4'b0001
 Bit#(4) z = a ^ b; // 4'b0110

- Bit selection

 Bit#(1) l = a[0]; // 1'b1 (least significant)
 Bit#(3) m = a[3:1]; // 3'b001
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```plaintext
Bit#(4) a = 4'b0011;  // 4-bit binary 3
Bit#(4) b = 4'b0101;  // 4-bit binary 5
Bit#(4) x = ~a;       // 4'b1100
Bit#(4) y = a & b;    // 4'b0001
Bit#(4) z = a ^ b;    // 4'b0110
```

- Bit selection

```plaintext
Bit#(1) l = a[0];     // 1'b1 (least significant)
Bit#(3) m = a[3:1];   // 3'b001
```

- Concatenation

```plaintext
Bit#(8) c = {a, b};   // 8'b00110101
```
Full Adder in Minispec

\[
s = a \oplus b \oplus c_{in}
\]
\[
c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}
\]

function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);

definition

endfunction
Full Adder in Minispec

\[s = a \oplus b \oplus c_{in} \]
\[c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \]

```
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
    Bit#(1) s = a ^ b ^ cin;
endfunction
```
Full Adder in Minispec

\[s = a \oplus b \oplus c_{in} \]
\[c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \]

```plaintext
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
    Bit#(1) s = a ^ b ^ cin;
    Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
endfunction
```
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 Bit#(1) s = a ^ b ^ cin;
 Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
 return {cout, s};
endfunction

s = a \oplus b \oplus c_{in}

\[c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \]
2-bit Ripple-Carry Adder
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);

endfunction
2-bit Ripple-Carry Adder

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
 Bit#(2) lower = fullAdder(a[0], b[0], cin);
endfunction

endfunction
2-bit Ripple-Carry Adder

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
 Bit#(2) lower = fullAdder(a[0], b[0], cin);
 Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
endfunction
2-bit Ripple-Carry Adder

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
 Bit#(2) lower = fullAdder(a[0], b[0], cin);
 Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
return {upper, lower[0]};
endfunction
2-bit Ripple-Carry Adder

- Functions are inlined: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones

```plaintext
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
  Bit#(2) lower = fullAdder(a[0], b[0], cin);
  Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
  return {upper, lower[0]};
endfunction
```
4-bit Ripple-Carry Adder

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
 Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
 Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
return {upper, lower[1:0]};
endfunction
Composing functions lets us build larger circuits, but writing very large circuits this way is tedious.

- Next lecture: Writing an n-bit adder in a single function
Multiplexers
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input)
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs \(a \) and \(b \) based on a single-bit input \(s \) (select input).

- Gate-level implementation:

\[
y = a \cdot \overline{s} + b \cdot s
\]
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input).

- Gate-level implementation:
 - If a and b are n-bit wide then this structure is replicated n times; s is the same input for all the replicated structures.
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s.

![Diagram of a 4-way multiplexer with inputs a, b, c, d and a 2-bit input s.]
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input \(s \)

- Typically implemented using 2-way multiplexers
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

- Typically implemented using 2-way multiplexers

- An n-way multiplexer can be implemented with a tree of $n-1$ 2-way multiplexers
Multiplexers in Minispec

- 2-way mux → Conditional operator
Multiplexers in Minispec

- 2-way mux → Conditional operator

Minispec

\[s? \ b : \ a \]
Multiplexers in Minispec

- 2-way mux \rightarrow Conditional operator

Minispec

\[
\begin{array}{c}
0 \\
1 \\
s
\end{array}
\] \quad \text{Minispec} \quad \text{s has type } \textbf{Bool}; \text{ True is treated as } 1 \text{ and False as } 0

\[
s \text{? b : a}
\]
Multiplexers in Minispec

- 2-way mux \rightarrow Conditional operator

Minispec: $s? b : a$

Python: b if s else a

s has type `Bool`; True is treated as 1 and False as 0
Multiplexers in Minispec

- **2-way mux → Conditional operator**
 \[s? \ b : \ a \]
 \(s \) has type **Bool**; True is treated as 1 and False as 0

- **N-way mux → Case expression**
Multiplexers in Minispec

- 2-way mux → Conditional operator
 - Minispec: `s? b : a`
 - Python: `b if s else a`

- N-way mux → Case expression
 - Minispec: `case (s)
 0 : a;
 1 : b;
 2 : c;
 3 : d;
 endcase`

 s has type *Bool*; True is treated as 1 and False as 0
Multiplexers in Minispec

- **2-way mux → Conditional operator**

 \[
 s \text{? } b : a
 \]

 - `s` has type `Bool`; `True` is treated as `1` and `False` as `0`

- **N-way mux → Case expression**

  ```minispec
  case (s)
      0 : a;
      1 : b;
      2 : c;
      3 : d;
  endcase
  ```

 - `s` has type `Bit#(2)`
Selecting a Wire: $x[i]$

- Constant selector: e.g., $x[2]$

Assume x is 4 bits wide.
Selecting a Wire: x[i]

- Constant selector: e.g., x[2]

Assume x is 4 bits wide
Selecting a Wire: \(x[i] \)

- Constant selector: e.g., \(x[2] \)

Assume \(x \) is 4 bits wide.
Selecting a Wire: $x[i]$

- **Constant selector:** e.g., $x[2]$
 - Assume x is 4 bits wide

- **Dynamic selector:** $x[i]$
 - No hardware; $x[2]$ is just the name of a wire
Selecting a Wire: $x[i]$

- **Constant selector:** e.g., $x[2]$
 - No hardware; $x[2]$ is just the name of a wire

 ![Constant selector diagram]

- **Dynamic selector:** $x[i]$
 - 4-way mux

 ![Dynamic selector diagram]
Shift operators
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

```
  1 0 0 1
  0 0 1 0
```

```
  a b c d
  0 0 a b
```

```
  a b c d
  a a a b
```

useful for multiplication and division by 2^n
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

-8/4

-2

useful for multiplication and division by 2^n
Logical right shift by n

- Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31.
Logical right shift by n

- Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31
- One way to do this is by selecting from 32 different fixed-size shifters using a mux
Logical right shift by n

- Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31.
- One way to do this is by selecting from 32 different fixed-size shifters using a mux.
Logical right shift by n

- Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31
- One way to do this is by selecting from 32 different fixed-size shifters using a mux

How many 2-way one-bit muxes are needed to implement this structure?
Logical right shift by n

- Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31.
- One way to do this is by selecting from 32 different fixed-size shifters using a mux.

$n \times (n-1)$

How many 2-way one-bit muxes are needed to implement this structure?
Suppose we want to build a shifter that right-shifts a value x by n where n is between 0 and 31.

One way to do this is by selecting from 32 different fixed-size shifters using a mux.

How many 2-way one-bit muxes are needed to implement this structure?

$$n \times (n-1)$$

Can we do better?
Barrel shifter
An efficient circuit to perform logical right shift by \(n \)

- Shift by \(n \) can be broken down into \(\log n \) steps of fixed-length shifts of size 1, 2, 4, ...
Barrel shifter
An efficient circuit to perform logical right shift by n

- Shift by n can be broken down into $\log n$ steps of fixed-length shifts of size 1, 2, 4, ...
 - For example, we can perform shift 5 ($=4+1$) by doing shifts of size 4 and 1
Barrel shifter
An efficient circuit to perform logical right shift by n

- Shift by n can be broken down into log n steps of fixed-length shifts of size 1, 2, 4, ...
 - For example, we can perform shift 5 ($=4+1$) by doing shifts of size 4 and 1
 - Thus, 8’b01100111 shift 5 can be performed in two steps:
Barrel shifter
An efficient circuit to perform logical right shift by n

- Shift by n can be broken down into $\log n$ steps of fixed-length shifts of size 1, 2, 4, ...
 - For example, we can perform shift 5 (=4+1) by doing shifts of size 4 and 1
 - Thus, 8'b01100111 shift 5 can be performed in two steps:
 - 8'b01100111 \Rightarrow 8'b00000110 \Rightarrow 8'b00000011

 shift 4
 shift 1
Barrel shifter
An efficient circuit to perform logical right shift by n

- Shift by n can be broken down into $\log n$ steps of fixed-length shifts of size 1, 2, 4, ...
 - For example, we can perform shift 5 ($=4+1$) by doing shifts of size 4 and 1
 - Thus, 8’b01100111 shift 5 can be performed in two steps:
 - 8’b01100111 \Rightarrow 8’b00000110 \Rightarrow 8’b00000011
 - shift 4
 - shift 1

- For a 32-bit number, a 5-bit n can specify all the needed shifts
 - $3_{10} = 00011_2$, $5_{10} = 00101_2$, $21_{10} = 10101_2$
Barrel shifter
An efficient circuit to perform logical right shift by n

- Shift by n can be broken down into log n steps of fixed-length shifts of size 1, 2, 4, ...
 - For example, we can perform shift 5 (=4+1) by doing shifts of size 4 and 1
 - Thus, 8'b01100111 shift 5 can be performed in two steps:
 - 8'b01100111 \Rightarrow 8'b00000110 \Rightarrow 8'b00000011
 - shift 4
 - shift 1

- For a 32-bit number, a 5-bit n can specify all the needed shifts
 - $3_{10} = 00011_2$, $5_{10} = 00101_2$, $21_{10} = 10101_2$
 - The bit encoding of n tells us which shifters are needed; if the value of the i^{th} (least significant) bit is 1 then we need to shift by 2^i bits
Conditional operation: Shift versus no-shift

- We need a mux to select the appropriate wires: if s is 1 the mux selects the wires on the left, otherwise it selects the wires on the right.
We need a mux to select the appropriate wires: if \(s \) is 1 the mux selects the wires on the left, otherwise it selects the wires on the right.

\[
(s==0)\?\{a,b,c,d\}:\{2'b0,a,b\}\
\]
Barrel shifter implementation

- A barrel shifter for an n-bit number uses a cascade of log n muxes, each performing a conditional fixed-size shift of sizes 1, 2, 4, ...
Barrel shifter implementation

- A barrel shifter for an n-bit number uses a cascade of $\log n$ muxes, each performing a conditional fixed-size shift of sizes 1, 2, 4, ...

- Example: A barrel shifter for 4-bit numbers can be expressed as two conditional expressions:

  ```
  function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
  endfunction
  ```
Barrel shifter implementation

- A barrel shifter for an n-bit number uses a cascade of log n muxes, each performing a conditional fixed-size shift of sizes 1, 2, 4, ...

- Example: A barrel shifter for 4-bit numbers can be expressed as two conditional expressions:

```markdown
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0)? x : {2'b00, x[3:2]};
endfunction
```
Barrel shifter implementation

- A barrel shifter for an n-bit number uses a cascade of log n muxes, each performing a conditional fixed-size shift of sizes 1, 2, 4, ...

- Example: A barrel shifter for 4-bit numbers can be expressed as two conditional expressions:

```haskell
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0)? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (s[0] == 0)? r1 : {1'b0, r1[3:0]};
endfunction
```
Barrel shifter implementation

- A barrel shifter for an n-bit number uses a cascade of log n muxes, each performing a conditional fixed-size shift of sizes 1, 2, 4, ...

- Example: A barrel shifter for 4-bit numbers can be expressed as two conditional expressions:

```plaintext
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0)? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (s[0] == 0)? r1 : {1'b0, r1[3:0]};
    return r0;
endfunction
```
Thank you!

Next lecture:
Complex combinational circuits
and advanced Minispec