Complex Combinational Logic: Implementation and Design Tradeoffs
Lecture Goals

- Learn some advanced Minispec features that enable implementing large circuits succinctly
 - Parametric functions
 - Type inference and user-defined types
 - Loops and control-flow statements

- Study design tradeoffs in combinational logic by analyzing different adder implementations
Reminder: Shifts

- **Fixed-size shifts are cheap**
 - Just wires

- **What about variable-size shifts?**
 - Suppose we want to build a shifter that right-shifts a 32-bit value \(x \) by \(n \), where \(n \) is between 0 and 31
 - Naïve approach: Select from 32 different fixed-size shifters using a mux
 - Expensive!
 - \(n*(n-1) \) 2-way 1-bit muxes
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by n using a series of fixed-size shifts by power-of-2 sizes
 - For example, shift by 5 ($=4+1$) can be done with shifts of sizes 4 and 1
 - The bit encoding of n tells us which shifts are needed: if the i^{th} bit of n is 1, then we need to shift by 2^i
 - Implementation: A cascade of $\log_2 n$ muxes that choose between shifting by 2^i and not shifting

How many 2-way 1-bit muxes?

\[n \times \log_2 n \]
Implementing Large Circuits in Minispec
Parametric Types

- Bit#(n), an n-bit value, is a parametric type
 - n is the parameter (an Integer value)
 - Using Bit#(n) requires specifying n (e.g., Bit#(4) is a 4-bit value)

- Minispec provides other parametric types, and lets you define your own
 - Parametric types are generic
 - They take one or more parameters
 - Parameters must be known at compile-time
 - Specifying the parameters yields a concrete type

- Parameters can be Integers or types
 - Example: Vector#(n, T) is an n-element vector of T’s (e.g., Vector#(4, Bit#(8)) = 4-elem vector of 8-bit values)
Parametric Functions

- Functions have fixed argument and return types
 - Problem 1: Have to write a function for every bit width
 - Problem 2: If we build large functions from smaller ones, have to write many functions! (e.g., rca2→rca4→rca8 ...)

- Parametric functions solve these problems: We can write one *generic* function that covers every case
 - Example: rca#(n), an n-bit ripple-carry adder

- A parametric function must be invoked with fixed parameters, which instantiates a *concrete* function
 - Example: Calling rca#(32) instantiates a 32-bit adder
Example: Parametric Parity

The parameter \(n \) is used as a variable in the function.

Large circuits implemented by composing smaller ones: \(\text{parity}(n) \) invokes \(\text{parity}(n-1) \)!

If another function calls \(\text{parity}(3) \), compiler produces:

```plaintext
function Bit#(1) parity#(3)(Bit#(3) x);
    return x[2] ^ parity#(2)(x[1:0]);
endfunction

function Bit#(1) parity#(2)(Bit#(2) x);
    return x[1] ^ parity#(1)(x[0:0]);
endfunction

function Bit#(1) parity#(1)(Bit#(1) x);
    return x;
endfunction
```

\[\text{parity}(3) \] \quad \text{parity}(2) \quad \text{parity}(1) \]
Integer is a Special Type
Always evaluated by the compiler

- Integer values are (positive or negative) numbers with an **unbounded number of bits**
 - Unbounded bits → Cannot be synthesized to hardware

- Integers are guaranteed to be evaluated at compile time, i.e., turned into fixed numbers
 - If the compiler cannot evaluate an Integer expression, it throws an error

- Integer supports the same operations as Bit#(n), (arithmetic, logical, comparisons, etc.)
 - But evaluated by compiler → operations on Integers never produce any hardware
N-bit Ripple-Carry Adder

function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
 Bit#(n) lower = rca#(n-1)(a[n-2:0], b[n-2:0], cin);
 Bit#(2) upper = fullAdder(a[n-1], b[n-1], lower[n-1]);
 return {upper, lower[n-2:0]};
endfunction

// Base case
function Bit#(2) rca#(1)(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 return fullAdder(a, b, cin);
endfunction

October 1, 2019
MIT 6.004 Fall 2019
L08-10
Type Inference

- You can omit the type of a variable by declaring it with the let keyword.
- The compiler infers the variable’s type from the type of the expression assigned to the variable.

```verilog
Bit#(4) x = 4'b0011;
let y = x;    // y has type Bit#(4)
let z = {x, x}; // z has type Bit#(8)
let w = 2'b11; // w has type Bit#(2)
let n = 42;   // n has type Integer
```
User-Defined Types

- **Type synonyms** allow giving a different name to a type

- **Structs** represent a group of member values with different types

- ** Enums** represent a set of symbolic constants

- Structs and enums are much clearer than using raw bits!
 - e.g., Bit#(24) pixel; pixel[15:8] versus pixel.green

```verilog
typedef Bit#(8) Byte;

typedef struct {
    Byte red;
    Byte green;
    Byte blue;
} Pixel;

Pixel p;
p.red = 255;

typedef enum {
    Ready, Busy, Error
} State;

State state = Ready;
```
For Loops

- For loop statements allow compactly expressing a sequence of similar statements

  ```
  Bit#(6) w = 0;
  for (Integer i = 0; i < 6; i = i + 1)
    w[i] = z[i / 2];
  ```

- For loops are not like loops in software programming languages!
 - Fixed number of iterations
 (Integer induction variable!)
 - Unrolled at compile time

- Example: The loop above is translated into this sequence:
  ```
  w[0] = z[0];
  w[1] = z[0];
  w[2] = z[1];
  w[3] = z[1];
  w[4] = z[2];
  w[5] = z[2];
  ```
N-bit Ripple-Carry Adder with Loop

function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
 Bit#(n) s = 0;
 Bit#(n+1) c = {0, cin};
 for (Integer i = 0; i < n; i = i + 1) begin
 let x = fullAdder(a[i], b[i], c[i]);
 s[i] = x[0];
 c[i+1] = x[1];
 end
 return {c[n], s};
endfunction
Conditional Statements

- If statements have a syntax similar to software:

```plaintext
function Bit#(4) max(Bit#(4) a, Bit#(4) b);
    Bit#(4) result = b;
    if (a > b) result = a;
    return result;
endfunction

function Bit#(4) max(Bit#(4) a, Bit#(4) b);
    Bit#(4) result;
    if (a > b) result = a;
    else result = b;
    return result;
endfunction
```

- But they are implemented very differently from software programming languages!
 - Translated to muxes, like conditional expressions
 - Each variable assigned within an if statement uses a mux to select the right value (the one assigned in the if branch, else branch, or the previous value)

- Minispec also has case statements (see tutorial)
Minispec Takeaways

- Minispec lets you build circuits with constructs similar to those of software programming languages

- But keep in mind that the implementation of these features is often quite different from software!
 - Parametric functions and types are instantiated
 - Functions are inlined
 - Conditionals (?:, if-else, case) are translated to multiplexers, and all their branches are evaluated
 - Loops are unrolled
 - What remains is an acyclic graph of gates

Never forget that you’re designing hardware
Design Tradeoffs in Combinational Circuits
Algorithmic Tradeoffs in Hardware Design

- Each function often allows many implementations with widely different delay, area, and power

- Choosing the right algorithms is key to optimizing your design
 - Tools cannot compensate for an inefficient algorithm (in most cases)
 - Just like programming software

- Case study: Building a better adder
Ripple-Carry Adder: Simple but Slow

- Worst-case path: Carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001

\[t_{PD} = n \times t_{PD,FA} \approx \Theta(n) \]

- \(\Theta(n) \) is read “order n” and tells us that the latency of our adder grows linearly with the number of bits of the operands.
Asymptotic Analysis

- Formally, \(g(n) = \Theta(f(n)) \) iff there exist \(C_2 \geq C_1 > 0 \) such that for all but finitely many integers \(n \geq 0 \),

\[
C_2 \cdot f(n) \geq g(n) \geq C_1 \cdot f(n)
\]

- Example: \(n^2 + 2n + 3 = \Theta(n^2) \) (read “is of order \(n^2 \)”) since \(2n^2 > n^2 + 2n + 3 > n^2 \) except for a few small integers.
Carry-Select Adder Trades Area for Speed

Two copies of the high half of the adder: one assumes carry-in of “0”, the other carry-in of “1”

- Propagation delay: $t_{PD,32} = t_{PD,16} + t_{PD,MUX}$
 - If we used 16-bit ripple-carry adders, this would roughly halve delay over a 32-bit ripple-carry adder
 - If we apply the same strategy recursively (build each 16-bit adder from 8-bit carry-select adders, etc.), $t_{PD,n} = \Theta(\log n)$

Drawbacks? Consumes much more area than ripple-carry adder
Wide mux adds significant delay (lab 4)
Carry-Lookahead Adders (CLAs)

- CLAs compute all carry bits in \(\Theta(\log n) \) delay

\[
\begin{array}{cccccc}
& a_{n-1} & b_{n-1} & a_{n-2} & b_{n-2} & a_2 & b_2 \\
& c_n & & & & & c_2 \\
& c_{n-1} & & & & & c_1 \\
& c_{n-2} & & & & & c_in \\
& FA & & & & & FA \\
& s_{n-1} & & & & & s_2 \\
& s_{n-2} & & & & & s_1 \\
& s_0 & & & & & c_out \\
\end{array}
\]

- Key idea: Transform chain of carry computations into a tree
 - Transforming a chain of associative operations (e.g., AND, OR, XOR) into a tree is easy
 - But how to do this with carries?
Carry Generation and Propagation

- We can rewrite $c_{out} = ab + (a+b)c_{in}$ as $c_{out} = g + pc_{in}$ with $g = ab$ (generate) and $p = a+b$ (propagate).
 - $g=1 \Rightarrow c_{out} = 1$ (FA generates a carry)
 - $p=1$ (and $g=0) \Rightarrow c_{out} = c_{in}$ (FA propagates carry)

Note p and g don’t depend upon c_{in}
Consider a 2-bit ripple-carry adder. Let's derive c_2 as a function of c_0 and the individual g's and p's.

$$c_2 = g_1 + p_1c_1 = g_1 + p_1(g_0 + p_0c_0) = g_1 + p_1g_0 + p_1p_0c_0$$

What about a 4-bit adder?

$$g_{10} = g_1 + p_1g_0 \quad p_{10} = p_1p_0$$
$$g_{32} = g_3 + p_3g_2 \quad p_{32} = p_3p_2$$
$$g_{30} = g_{32} + p_{32}g_{10} \quad p_{30} = p_{32}p_{10}$$
$$c_4 = g_{30} + p_{30}c_0$$
CLA Building Blocks

- **Step 1**: Generate individual g & p signals

 \[g = ab \]

 \[p = a+b \]

- **Step 2**: Combine adjacent g & p signals

 \[g_{ik} = g_{ij} + p_{ij}g_{(j-1)k} \]

 \[p_{ik} = p_{ij}p_{(j-1)k} \quad (i \geq j > k) \]

- **Step 3**: Generate individual carries

 \[c_{i+1} = g_{ij} + p_{ij}c_j \]

There are many CLA variants. Let’s derive the Brent-Kung CLA.
Generating and Combining gp’s

How does delay grow with number of bits?

$\Theta(\log n)$
Generating the Carries

\[
\begin{align*}
\text{a}_7 \text{ b}_7 & \rightarrow \text{gp}_7 \\
\text{a}_6 \text{ b}_6 & \rightarrow \text{gp}_6 \\
\text{a}_5 \text{ b}_5 & \rightarrow \text{gp}_5 \\
\text{a}_4 \text{ b}_4 & \rightarrow \text{gp}_4 \\
\text{a}_3 \text{ b}_3 & \rightarrow \text{gp}_3 \\
\text{a}_2 \text{ b}_2 & \rightarrow \text{gp}_2 \\
\text{a}_1 \text{ b}_1 & \rightarrow \text{gp}_1 \\
\text{a}_0 \text{ b}_0 & \rightarrow \text{gp}_0 \\
\end{align*}
\]
There are many CLA designs

- We’ve seen a Brent-Kung CLA
- Several other types (e.g., Kogge-Stone)
- Different variants for each type, e.g., using higher-radix trees to reduce depth

This technique is useful beyond adders: computes any one-dimensional binary recurrence in $\Theta(\log n)$ delay

- e.g., comparators, priority encoders, etc.
Summary

- Parametric functions let us write a generic description of a function that is then instantiated on demand.

- Use for loops and if-else statements with care: their similarity to software can be confusing and they can lead to poor circuits.

- Choosing the right algorithms is crucial to design good digital circuits—tools can only do so much.

- Carry-lookahead adders perform $\Theta(\log n)$ addition with modest area cost. This technique can be used to optimize a broad class of circuits.
Thank you!

Next lecture: CMOS