Note: A subset of essential problems are marked with a red star (★). We especially encourage you to try these out before recitation.

Problem 1. ★

(A) Consider the 4-bit ripple carry adder we saw in lecture. Its circuit is shown below. Modify the diagram to build a **subtractor**, i.e., a circuit that given 4-bit inputs \(a\) and \(b\), computes \(a - b\).

You may use only one ripple-carry adder, and may add at most four gates to the diagram.
Assume that \(a\) and \(b\) use two’s complement representation. Your circuit should return the result in two’s complement representation.

Hint: Back in lecture 1, we saw that by using two’s complement representation, we could perform subtraction using addition.

(B) Implement your subtractor as a Minispec function `sub4`. Your function can use at most one `rca4` function (the function implementing 4-bit ripple carry adder we saw in lecture).

```minispec
function Bit#(5) sub4(Bit#(4) a, Bit#(4) b);

definition

endfunction
```
Problem 2. ★

(A) Implement a Minispec function isZero that returns 1 if its 4-bit input is zero, and 0 otherwise. Your implementation can only use bitwise logical operations and bit selection, and cannot use the equality/inequality operators.

```verilog
function Bit#(1) isZero(Bit#(4) x);

endfunction
```

(B) Manually synthesize your function into a combinational circuit using 2-input AND gates, 2-input OR gates, and inverters. Keep delay low by minimizing the number of logic gates between input and output. Draw the resulting circuit.
Problem 3. ★

Write the truth table for the combinational device described by the function below.

```plaintext
function Bit#(2) f(Bit#(1) a, Bit#(1) b, Bit#(1) c);
Bit#(4) upper = 4'hB; // hex value 0xB
Bit#(4) lower = (c == 1)? 4'h8 : 4'h7;
Bit#(8) x = {upper, lower};
Bit#(2) ret = case ({a,b})
  0: 1;
  1: x[1:0];
  2: x[3:2];
  3: x[7:6] ^ 2'b11;
endcase;
return ret;
endfunction
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ret[1]</th>
<th>ret[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 4.

Show that 1-bit 2-to-1 muxes are universal, i.e., they can be used to implement any combinational circuit. To show universality, implementing an inverter, an AND gate, and an OR gate using only 1-bit 2-to-1 muxes. You may tie inputs to 1 or 0 if necessary, and may use one or multiple muxes. Clearly label all inputs and outputs.

\[Z = A \cdot S + B \cdot \bar{S} \]

Logic diagram of inverter implementation using 2-input mux:

Logic diagram of AND gate implementation using 2-input mux:

Logic diagram of OR gate implementation using 2-input mux:
Problem 5.

The parity of an n-bit number x is 1 if x has an odd number of 1’s, and 0 otherwise. Parity is useful to detect single-bit errors, as a single bit flip changes the parity of a value.

(A) Write a Minispec function `addParity` that takes as input a 4-bit value and returns a 5-bit output that adds a parity bit to the input in the most significant position. In other words, the most-significant bit of the output should be the input’s parity, and the remaining bits should be the input.

(B) What is the parity of the outputs of the `addParity` circuit? Does the parity of the output depend on the input value?

(C) Write a Minispec function `checkParity` that takes as input a 5-bit value and returns True if the input has an even number of 1’s, and returns False otherwise.
Problem 6. Combinational Minispec (part of Spring 2020 Quiz 2 problem 3, 8 points)

Complete the truth table for the following Minispec function.

```plaintext
function Bit#(3) h(Bit#(1) a, Bit#(2) b);
    Bit#(3) ret = 3'b110;
    case ({a, b[1]})
        0: ret = {1'b0, zeroExtend(a) & b};
        1: ret = zeroExtend(a) + signExtend(b);
        3: ret = {a, ~b};
        default: ret = 3'b010;
    endcase
    return ret;
endfunction
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Label: 3A) Copy the truth table and fill in all the missing blanks.