1 When the Dog Bites, When the Bee Stings
Converting non-inverting logic into inverting logic

Several early computers from the 1950s, such as the Bendix G-15 and the Librascope LGP-30, used thermionic valves (vacuum tubes) and semiconductor diodes for their logical circuits. The first fully-transistorized computer, the IBM 608, used transistors and diodes.

An interesting property of diode logic is that it is non-inverting, which means that AND, OR, and NOT gates are the primitive elements, whereas NAND and NOR gates can only be made by inverting AND and OR.

By contrast, modern-day CMOS logic is inverting; NAND, NOR, and NOT are the primitive elements, and AND and OR can only be made by inverting NAND and NOR.

The circuit below is from the G-15. On the left is the original; on the right is the same circuit rewritten in modern notation. The way that logic is implemented in the G-15 constrains AND gates to come before OR gates,* so frequently the logic is naturally in a sum-of-product form. Using DeMorgan’s law and other properties of Boolean algebra, translate this circuit from non-inverting logic to inverting logic while attempting to minimize the gate count. Can you guess what part of the machine this circuit is from?

* Unless a buffer-inverter is used. AND and OR gates were made of diodes, but flip-flops and buffer-inverters required one or two vacuum tubes, which were physically larger and consumed a hundred times more power.
2 I Didn't Write the Rest of These Problems...

Procedurally generating hardware

The following bsv function takes a doublet as a single argument and returns its reverse with the same type.

```hs
function Bit#(16) reverse16(Bit#(16) in);
    Bit#(16) rev;
    rev[ 0] = in[15];
    rev[ 1] = in[14];
    rev[ 2] = in[13];
    rev[ 3] = in[12];
    rev[ 5] = in[10];
    rev[ 6] = in[ 9];
    rev[ 7] = in[ 8];
    rev[ 8] = in[ 7];
    rev[ 9] = in[ 6];
    rev[10] = in[ 5];
    rev[12] = in[ 3];
    rev[14] = in[ 1];
    rev[15] = in[ 0];
    return rev;
endfunction
```

Write a new function that reverses input of any bit width. Its function signature should be

```hs
function Bit#(w) reverse(Bit#(w) in)
```
Six blocks of `bsv` code are shown below. Decide whether each block is syntactically and typically valid, and if it’s not, recommend how it should be fixed. For the sake of this problem, assume that the function `add` exists, having the following function signature.

```verbatim
function Bit#(w) add(Bit#(w) a, Bit#(w) b, Bit#(1) c_in)
```

BLOCK 1
```
function Bit#(64) Add64(Bit#(64) a, Bit#(64) b);
    Bit#(64) Out = add(a, b, 0);
    return Out;
endfunction
```

BLOCK 2
```
function Bit#(64) add64(Bit#(64) a, Bit#(32) b);
    return add(a, b, 0);
endfunction
```

BLOCK 3
```
function UInt#(64) add64(UInt#(64) a, UInt#(64) b);
    return add(a, b, 0);
endfunction
```

BLOCK 4
```
function Bool isZero(UInt#(8) a);
    return (a==0) ? 1 : 0;
endfunction
```

BLOCK 5
```
function Bit#(32) shift32(Bit#(32) in, Bit#(5) shiftAmount);
    Bit#(32) out = in;
    for (Integer i = 0; i < shiftAmount; i = i+1) begin
        out = {1'b0, out[31:1]};
    end
    return out;
endfunction
```

BLOCK 6
```
typedef enum {Red, Green, Blue} Color deriving {Bits, Eq};
function Color getColor(Bit#(2) a);
    return unpack(a);
endfunction
```
Parameterizing the reverse bit scanning function from Lab 3

In Lab 3 we wrote a function that computed the floor of the binary logarithm of its input (or equivalently, the index of the most-significant non-zero bit). Rewrite this function so that it works with inputs of arbitrary bit width.
Writing a parameterized parity checker

Unlike integers, the parity of a bit vector usually refers to the oddness of the sum of its digits, so that the parity of a bit vector is 1 if it contains an odd number of 1’s and 0 if it contains an even number of 1’s.

Write a function that computes the parity of an \(n \)-bit vector, assuming that \(n \) is a power of 2. The propagation delay of your circuit should be \(O(\log n) \).