Combinational Logic and Introduction to Minispec

Reminders:
• Quiz review session tonight 7:30-9:30pm in 6-120
• Lab 2 checkoffs due by tomorrow
• Quiz 1: Thursday 7:30-9:30pm
 • See website or Piazza for room assignments
Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter

- Learn how to implement combinational circuits in the Minispec hardware description language (HDL)
 - Design each combinational circuit as a function, which can be simulated or synthesized into gates
Building a Combinational Adder

- **Goal:** Build a circuit that takes two n-bit inputs \(a \) and \(b \) and produces \((n+1)\)-bit output \(s = a + b \)

- **Approach:** Implement the binary addition algorithm we have seen (called the standard algorithm)

\[
\begin{array}{c}
\text{n-bit adder} \\
s_n s_0 \\
\uparrow \cdots \uparrow \\
a_{n-1} a_0 b_{n-1} b_0 \\
\end{array}
\quad
\begin{array}{c}
\text{n-bit adder} \\
s \\
\downarrow \\
a^n b^n \\
\end{array}
\]

\[
\begin{array}{c}
1110 \\
\uparrow \text{carry} \\
1110 + 0111 \\
\downarrow \\
10101 \\
\end{array}
\]
The i^{th} step of each addition
- Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
- Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
- The 2-bit output $c_{i+1}s_i$ is the binary sum of the three inputs

Can you build a circuit that performs a single step with what you’ve learned so far?
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: \(a\), \(b\), and carry-in
 - Produces a sum bit and a carry-out bit

- Then, cascade FAs to perform binary addition

- Result: A ripple-carry adder (simple but slow)
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>cin</th>
<th>cout</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

\[s = a \oplus b \oplus c_{in} \]
\[c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \]
Describing a 32-bit Adder

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
 - $0 \leq k \leq 31$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.) But be aware of the differences!
Introduction to Minispec

A simple HDL based on Bluespec
Combinational Logic as Functions

In Minispec, combinational circuits are described using functions.

- Return type
- Function name
- Input arguments
- Statement(s), including a return statement

```plaintext
function Bool inv(Bool x);
Bool result = !x;
return result;
endfunction
```

- All values have a fixed type, which is known statically (e.g., result is of type Bool)
- Note: Types Start With An Uppercase Letter, variable and function names are lowercase
Bool Type and Operations

- Values of type `Bool` can be `True` or `False`
- Bool supports Boolean and comparison operations:

```c
Bool a = True;
Bool b = False;

Bool x = !a;    // False since a == True
Bool y = a && b; // False since b == False
Bool z = a || b; // True since a == True

Bool n = a != b; // True; equivalent to XOR
Bool e = a == b; // False; equivalent to XNOR
```

- Bool is the simplest type, but working with many single-bit values is tedious
 - Need a type that represents multi-bit values!
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)
 - Bit#(4) a = 4'b0011; // 4-bit binary 3
 - Bit#(4) b = 4'b0101; // 4-bit binary 5
 - Bit#(4) x = ~a; // 4'b1100
 - Bit#(4) y = a & b; // 4'b0001
 - Bit#(4) z = a ^ b; // 4'b0110
 - Bit selection
 - Bit#(1) l = a[0]; // 1'b1 (least significant)
 - Bit#(3) m = a[3:1]; // 3'b001
 - Concatenation
 - Bit#(8) c = {a, b}; // 8'b00110101
Full Adder in Minispec

\[
\begin{align*}
 s &= a \oplus b \oplus c_{in} \\
 c_{out} &= a \cdot b + a \cdot c_{in} + b \cdot c_{in}
\end{align*}
\]

function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 Bit#(1) s = a \oplus b \oplus cin;
 Bit#(1) cout = (a \& b) | (a \& cin) | (b \& cin);
 return \{cout, s\};
endfunction
2-bit Ripple-Carry Adder

- Functions are inlined: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones

```plaintext
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
    Bit#(2) lower = fullAdder(a[0], b[0], cin);
    Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
    return {upper, lower[0]};
endfunction
```

- Functions are inlined: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones
4-bit Ripple-Carry Adder

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
return {upper, lower[1:0]};
endfunction

- Composing functions lets us build larger circuits, but writing very large circuits this way is tedious
 - Next lecture: Writing an n-bit adder in a single function
Multiplexers
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input).

- Gate-level implementation:
 - If a and b are n-bit wide then this structure is replicated n times; s is the same input for all the replicated structures.
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

 - Typically implemented using 2-way multiplexers

- An n-way multiplexer can be implemented with a tree of $n-1$ 2-way multiplexers
Multiplexers in Minispec

- 2-way mux → Conditional operator

  ```
  s? b : a
  ```

 s has type `Bool`; *True is treated as 1 and False as 0*

- N-way mux → Case expression

  ```
  case (s)
  0 : a;
  1 : b;
  2 : c;
  3 : d;
  endcase
  ```

 s has type `Bit#(2)`
Selecting a Wire: $x[i]$

- **Constant selector:** e.g., $x[2]$

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>$[2]$</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
</table>

 no hardware; $x[2]$ is just the name of a wire

- **Dynamic selector:** $x[i]$

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>$[i]$</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
</table>

 4-way mux
Shift operators
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

Useful for multiplication and division of two’s complement
Logical right shift by n

- Suppose we want a shifter that right-shifts an N-bit input x by n, where $N=32$ and $0 \leq n \leq 31$

- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way one-bit muxes are needed to implement this structure?

$$(32-1) \times 32 = 992$$

$= \sim 4k$ gates

We can do better!
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by \(n \) using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of \(n \) tells us which shifts are needed: if the \(i^{th} \) bit of \(n \) is 1, then we need to shift by \(2^i \)
 - Ex: 5 = 0b00101
 - Implementation: A cascade of \(\log_2 N \) muxes that choose between shifting by \(2^i \) and not shifting

\[\text{How many 2-way 1-bit muxes?} \]
\[N \times \log_2 N = 32 \times 5 = 160 \]
Barrel shifter implementation

- Example in Minispec for N=4
 - Only need 2 bits for n, why?

- Use conditional operator for 2-way muxes

- Use concatenation and bit selection for fixed shifts

```verilog
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) n);
    Bit#(4) r1 = (n[1] == 0) ? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (n[0] == 0) ? r1 : {1'b0, r1[3:1]};
    return r0;
endfunction
```
Thank you!

Next lecture: Complex combinational circuits and advanced Minispec