Complex Combinational Logic: Implementation and Design Tradeoffs

Quiz 1 tonight 7:30-9:30PM

• Last name A-G: 3-270
• Last name H-Q: 4-270
• Last name R-Z: 4-370
• Accommodations: 24-115
Lecture Goals

- Learn about efficient shifter implementations (from last lecture)

- Learn some advanced Minispec features that enable implementing large circuits succinctly
 - Parametric functions
 - Type inference and user-defined types
 - Loops and control-flow statements

- Study design tradeoffs in combinational logic by analyzing different adder implementations
Shift operators
Fixed-size shifts

- Fixed size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

Useful for multiplication and division of two’s complement

March 5, 2020 MIT 6.004 Spring 2020 L09-4
Logical right shift by n

- Suppose we want a shifter that right-shifts an N-bit input x by n, where $N=32$ and $0 \leq n \leq 31$
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way one-bit muxes are needed to implement this structure?

$$(32-1) \times 32 = 992 = \sim 4k \text{ gates}$$

We can do better!
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by \(n \) using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of \(n \) tells us which shifts are needed: if the \(j^{th} \) bit of \(n \) is 1, then we need to shift by \(2^i \)
 - Ex: 5 = 0b00101
 - Implementation: A cascade of \(\log_2 N \) muxes that choose between shifting by \(2^i \) and not shifting

\[\text{How many 2-way 1-bit muxes?} \]
\[N \times \log_2 N = 32 \times 5 = 160 \]
Barrel shifter implementation

- Example in Minispec for N=4
 - Only need 2 bits for n, why?

- Use conditional operator for 2-way muxes

- Use concatenation and bit selection for fixed shifts

```verilog
function Bit #(4) barrelShifter(Bit #(4) x, Bit #(2) n);
    Bit #(4) r1 = (n[1] == 0) ? x : {2'b00, x[3:2]};
    Bit #(4) r0 = (n[0] == 0) ? r1 : {1'b0, r1[3:1]};
    return r0;
endfunction
```
Advanced Minispec Features for Large Circuits

Extra complexity to make your life easier!
Type Inference

- You can omit the type of a variable by declaring it with the let keyword.
- The compiler infers the variable’s type from the type of the expression assigned to the variable.

```plaintext
Bit#(4) x = 4'b0011;
let y = x;  // y has type Bit#(4)
let z = {x, x};  // z has type Bit#(8)
let w = 2'b11;  // w has type Bit#(2)
let n = 42;    // n has type Integer
```

- Use sparingly: Saves typing but can mask mistakes.
User-Defined Types

- **Type synonyms** allow giving a different name to a type

- **Structs** represent a group of member values with different types

- **Enums** represent a set of symbolic constants

- Structs and enums are much clearer than using raw bits!
 - e.g., Bit#(24) pixel; pixel[15:8] versus pixel.green

```plaintext
typedef Bit#(8) Byte;
typedef struct {
    Byte red;
    Byte green;
    Byte blue;
} Pixel;

Pixel p;
p.red = 255;

typedef enum {
    Ready, Busy, Error
} State;

State state = Ready;
```
Parametric Types

- **Bit#(n)**, an n-bit value, is a parametric type
 - n is the **parameter** (an Integer value)
 - Using Bit#(n) requires specifying n (e.g., Bit#(4) is a 4-bit value)

- Minispec provides other parametric types, and lets you define your own
 - Parametric types are **generic**
 - They take one or more parameters
 - Parameters must be known at compile-time
 - Specifying the parameters yields a **concrete** type

- **Parameters can be Integers or types**
 - Example: Vector#(n, T) is an n-element vector of T’s (e.g., Vector#(4, Bit#(8)) = 4-elem vector of 8-bit values)
Parametric Functions

- Functions have fixed argument and return types
 - Problem 1: Have to write a function for every bit width
 - Problem 2: If we build large functions from smaller ones, have to write many functions! (e.g., rca2 → rca4 → rca8 ...)

- Parametric functions solve these problems: We can write one *generic* function that covers every case
 - Example: rca#(n), an n-bit ripple-carry adder

- A parametric function must be invoked with fixed parameters, which instantiates a *concrete* function
 - Example: Calling rca#(32) instantiates a 32-bit adder
Example: Parametric Parity

- The parameter \(n \) is used as a variable in the function
- Large circuits implemented by composing smaller ones: \(\text{parity#}(n) \) invokes \(\text{parity#}(n-1) \)!
- If another function calls \(\text{parity#}(3) \), compiler produces:

```verbatim
function Bit#(1) parity#(Integer n)(Bit#(n) x);
    return (n == 1)? x : x[n-1] ^ parity#(n-1)(x[n-2:0]);
endfunction

function Bit#(1) parity#(3)(Bit#(3) x);
    return x[2] ^ parity#(2)(x[1:0]);
endfunction

function Bit#(1) parity#(2)(Bit#(2) x);
    return x[1] ^ parity#(1)(x[0:0]);
endfunction

function Bit#(1) parity#(1)(Bit#(1) x);
    return x;
endfunction
```
Integer is a Special Type
Always evaluated by the compiler

- Integer values are (positive or negative) numbers with an **unbounded number of bits**
 - Unbounded bits → Cannot be synthesized to hardware

- Integers are guaranteed to be evaluated at compile time, i.e., turned into fixed numbers
 - If the compiler cannot evaluate an Integer expression, it throws an error

- Integer supports the same operations as Bit#(n), (arithmetic, logical, comparisons, etc.)
 - But evaluated by compiler → operations on Integers never produce any hardware
function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
 Bit#(n) lower = rca#(n-1)(a[n-2:0], b[n-2:0], cin);
 Bit#(2) upper = fullAdder(a[n-1], b[n-1], lower[n-1]);
 return {upper, lower[n-2:0]};
endfunction

// Base case
function Bit#(2) rca#(1)(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 return fullAdder(a, b, cin);
endfunction
For Loops

- For loop statements allow compactly expressing a sequence of similar statements

```haskell
Bit#(6) w = 0;
for (Integer i = 0; i < 6; i = i + 1)
  w[i] = z[i / 2];
```

- For loops are not like loops in software programming languages!

 - Fixed number of iterations (Integer induction variable!)
 - Unrolled at compile time

- Example: The loop above is translated into this sequence:

```haskell
w[0] = z[0];
w[1] = z[0];
w[2] = z[1];
w[3] = z[1];
w[4] = z[2];
w[5] = z[2];
```
N-bit Ripple-Carry Adder with Loop

```
function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
  Bit#(n) s = 0;
  Bit#(n+1) c = {0, cin};
  for (Integer i = 0; i < n; i = i + 1) begin
    let x = fullAdder(a[i], b[i], c[i]);
    s[i] = x[0];
    c[i+1] = x[1];
  end
  return {c[n], s};
endfunction
```
Conditional Statements

- If statements have a syntax similar to software:

```
function Bit#(4) max(Bit#(4) a, Bit#(4) b);
    Bit#(4) result = b;
    if (a > b) result = a;
    return result;
endfunction
```

- But they are implemented very differently from software programming languages!
 - Translated to muxes, like conditional expressions
 - Each variable assigned within an if statement uses a mux to select the right value (the one assigned in the if branch, else branch, or the previous value)

- Minispec also has case statements (see tutorial)
Minispec Takeaways

- Minispec lets you build circuits with constructs similar to those of software programming languages.
- But keep in mind that the implementation of these features is often quite different from software!
 - Parametric functions and types are instantiated.
 - Functions are inlined.
 - Conditionals (?:, if-else, case) are translated to multiplexers, and all their branches are evaluated.
 - Loops are unrolled.
 - What remains is an acyclic graph of gates.

Never forget that you’re designing hardware.
Design Tradeoffs in Combinational Circuits
Algorithmic Tradeoffs in Hardware Design

- Each function often allows many implementations with widely different delay, area, and power

- Choosing the right **algorithms** is key to optimizing your design
 - Tools cannot compensate for an inefficient algorithm (in most cases)
 - Just like programming software

- Case study: Building a better adder
Ripple-Carry Adder: Simple but Slow

- Worst-case path: Carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001

\[t_{PD} = n \times t_{PD,FA} \approx \Theta(n) \]

- \(\Theta(n) \) is read “order n” and tells us that the latency of our adder grows linearly with the number of bits of the operands.
Asymptotic Analysis

- Formally, \(g(n) = \Theta(f(n)) \) iff there exist \(C_2 \geq C_1 > 0 \) such that for all but finitely many integers \(n \geq 0 \),

\[
C_2 \cdot f(n) \geq g(n) \geq C_1 \cdot f(n)
\]

\[g(n) = O(f(n)) \quad \Theta(...) \text{ implies both inequalities;}
\]

\[O(...) \text{ implies only the first.} \]

- Example: \(n^2 + 2n + 3 = \Theta(n^2) \) (read “is of order \(n^2 \)”)
 since \(2n^2 > n^2 + 2n + 3 > n^2 \)
 except for a few small integers

- In practice: \(\Theta(n^2) > \Theta(n \log_2 n) > \Theta(n) > \Theta(\log_2 n) \)
Carry-Select Adder Trades Area for Speed

- Propagation delay: $t_{PD,32} = t_{PD,16} + t_{PD,MUX}$
 - If we used 16-bit ripple-carry adders, this would roughly halve delay over a 32-bit ripple-carry adder
 - If we apply the same strategy recursively (build each 16-bit adder from 8-bit carry-select adders, etc.), $t_{PD,n} = \Theta(\log n)$

Drawbacks? Consumes much more area than ripple-carry adder. Wide mux adds significant delay (lab 4)
Carry-Lookahead Adders (CLAs)

- CLAs compute all carry bits in $\Theta(\log n)$ delay

- Key idea: Transform chain of carry computations into a tree
 - No duplication of full adders
 - Faster and smaller than carry-select but more complex
Summary

- Parametric functions let us write a generic description of a function that is then instantiated on demand.

- Use for loops and if-else statements with care: their similarity to software can be confusing and they can lead to poor circuits.

- Choosing the right algorithms is crucial to design good digital circuits—tools can only do so much.

- Carry-select and carry-lookahead adders perform $\Theta(\log n)$ addition but at the cost of increased area.
Carry-Lookahead Adder Details

NOTE: Remaining slides are optional material which will not be on a quiz but may be helpful for Lab 4 or the Design Project.
Carry Generation and Propagation

We can rewrite \(c_{\text{out}} = ab + (a+b)c_{\text{in}} \) as \(c_{\text{out}} = g + pc_{\text{in}} \) with \(g = ab \) (generate) and \(p = a+b \) (propagate).

- \(g=1 \) \(\rightarrow c_{\text{out}} = 1 \) (FA generates a carry)
- \(p=1 \) (and \(g=0 \)) \(\rightarrow c_{\text{out}} = c_{\text{in}} \) (FA propagates carry)

Note \(p \) and \(g \) don’t depend upon \(c_{\text{in}} \)
Generate and Propagate Compose Hierarchically!

- Consider a 2-bit ripple-carry adder. Let’s derive c_2 as a function of c_0 and the individual g’s and p’s

\[
c_2 = g_1 + p_1c_1 = g_1 + p_1(g_0 + p_0c_0)
= g_1 + p_1g_0 + p_1p_0c_0
\]

- What about a 4-bit adder?

\[
g_{10} = g_1 + p_1g_0 \quad p_{10} = p_1p_0

g_{32} = g_3 + p_3g_2 \quad p_{32} = p_3p_2
\]
\[
g_{30} = g_{32} + p_{32}g_{10} \quad p_{30} = p_{32}p_{10}
\]
\[
c_4 = g_{30} + p_{30}c_0
\]
CLA Building Blocks

- **Step 1:** Generate individual g & p signals

 $a \rightarrow g = ab$
 $b \rightarrow p = a+b$

 $g(p) = \{g, p\}$

- **Step 2:** Combine adjacent g & p signals

 $g(p)_{ij} \rightarrow g(p)_{(j-1)k}$

 $g_{ik} = g_{ij} + p_{ij}g_{(j-1)k}$
 $p_{ik} = p_{ij}p_{(j-1)k}$ $\quad (i \geq j > k)$

- **Step 3:** Generate individual carries

 $g(p)_{ij} \rightarrow c_j$

 $c_{i+1} = g_{ij} + p_{ij}c_j$

There are many CLA variants. Let’s derive the Brent-Kung CLA.
Generating and Combining gp’s

How does delay grow with number of bits?

$\Theta(\log n)$
Generating the Carries

March 5, 2020
MIT 6.004 Spring 2020
L09-32
Carry-Lookahead Adder Takeaways

- As fast (or faster!) than carry-select adder, with much less extra area

- There are many CLA designs
 - We’ve seen a Brent-Kung CLA
 - Several other types (e.g., Kogge-Stone)
 - Different variants for each type, e.g., using higher-radix trees to reduce depth

- This technique is useful beyond adders: computes any one-dimensional binary recurrence in $\Theta(\log n)$ delay
 - e.g., comparators, priority encoders, etc.
Thank you!

Next lecture: Sequential Circuits