CMOS Technology
A Deep Dive Into a Chip

Packaged chip

Silicon die (100-400mm²)

Transistor (FET)

Die cross-section

6-15 metal layers (wires)

Source: Intel

September 22, 2020

MIT 6.004 Fall 2020
Field-Effect Transistors (FETs)

- Nearly all digital systems are built using field-effect transistors, which are voltage-controlled switches.

- FETs come in two varieties: nFET and pFET.

nFET

- A high voltage at gate (G=1) creates a conducting path between source and drain.

pFET

- A low voltage at gate (G=0) creates a conducting path between source and drain.
Labeling Source and Drain

- There is no physical difference between source and drain, called the **diffusion terminals**
- By convention, we label diffusion terminals as source or drain depending on their voltages:
 - On nFETs, source = diffusion terminal at lower voltage
 - On pFETs, source = diffusion terminal at higher voltage
- This convention lets us define the behavior of FETs using the voltage between gate and source
FET Switching Model

- FETs have a threshold voltage V_{TH}
- nFET is ON if the voltage between gate and source V_{GS} exceeds V_{TH}, OFF otherwise
- pFET is ON if the voltage between source and gate V_{SG} exceeds V_{TH}, OFF otherwise

This is a very simplified model, but it is sufficient to build logic gates
What Does This Circuit Compute?

Assume $V_{TH} < V_{DD}/2$

$V_{IN} < V_{TH}$ $V_{IN} > V_{DD} - V_{TH}$

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Note on Terminology

- MOSFETs (metal-oxide-semiconductor field-effect transistors) are the most common type of FET

- nFET and pFET are sometimes abbreviated as nMOS and pMOS

- CMOS stands for complementary MOS
What Does This Circuit Compute?

CMOS NAND gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

CMOS NAND gate
CMOS Logic

- CMOS gates have complementary pullup and pulldown networks, i.e., the pullup is on where the pulldown is off and vice versa.

<table>
<thead>
<tr>
<th>pullup</th>
<th>pulldown</th>
<th>F(inputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>off</td>
<td>driven “1”</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>driven “0”</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>driven “X”</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>no connection</td>
</tr>
</tbody>
</table>

- CMOS uses pFETs to implement the pullup network and nFETs to implement the pulldown network.
Some Questionable Gates

- What can go wrong with the following gates?

- CMOS Rule #1: Complementary pullup and pulldown networks
- CMOS Rule #2: pFETs in pullup, nFETs in pulldown

A=0 B=1 or A=1 B=0 connect supply and ground

V_{OUT} below V_{TH}

V_{OUT} above V_{DD} - V_{TH}

pFET doesn’t pull down

nFET doesn’t pull up

September 22, 2020

MIT 6.004 Fall 2020

L07-10
CMOS Complements

- Conducts when A is high
- Conducts when A is low: \overline{A}

- Conducts when A is high and B is high: $A \cdot B$

- Conducts when A is low or B is low: $A + B = A \cdot B$

- Conducts when A is high or B is high: $A + B$

- Conducts when A is low and B is low: $\overline{A} \cdot \overline{B} = \overline{A + B}$
General CMOS Gate Recipe

Step 1. Derive the pullup network that does what you want, e.g.,

\[F = \overline{A} + \overline{B} \times \overline{C} \]

(Determine what combination of inputs generates a high output)

Step 2. Derive complementary pulldown network: replace pFETs with nFETs, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pFET pullup network from Step 1 with nFET pulldown network from Step 2 to form the CMOS gate.

Can CMOS gates implement arbitrary functions? No
CMOS Gates are Inverting

- In a CMOS gate, rising inputs (0→1) lead to falling outputs (1→0) and vice versa.

- On a rising input,
 - nFETs go OFF → ON, so pulldown may connect output to ground,
 - pFETs go ON → OFF, so pullup may disconnect output from V_{DD}
 - Output either stays the same or falls.

- Corollary: Cannot build non-inverting logic using a single CMOS gate.
 - Example: AND

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A·B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rising input</th>
<th>rising output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Analyzing the Delay, Area, and Power of CMOS Gates

NOTE: Demystification, will not be on the quiz
MOSFET Physical Structure

Gate

Drain

Source

nFET

Gate

Source

Drain

Metal

Oxide (dielectric)

Semiconductor
With $V_{GS} < V_{TH}$, almost no current flows between source and drain.

As V_{GS} reaches V_{TH}, a channel forms between source and drain.

The shape of the channel (and its resistance) also depends on the voltage at the drain. But a low-resistance channel will exist while $V_{GS} > V_{TH}$.
FET *First-Order* Electrical Model

- Simplest possible model that lets us reason about delay, area, and power. Not very accurate!
CMOS Gate Delay

Consider the following circuit. Given $V_{IN}(t)$, can you derive $V_{OUT}(t)$?

For $t > 0$, $V_{OUT}(t) = V_{OUT}(0)e^{-t/RC}$.
Propagation Delay

Propagation delay (t_{PD}): Upper bound on the delay from valid inputs to valid outputs.

To minimize t_{PD}, must keep resistances and capacitances low.
MOSFET Sizing

- CMOS gates use MOSFETs with smallest possible L and choose W to set performance
 - Wider FETs drive more current (lower R), but their gates are harder to drive (higher C) and they take more area

\[
C_{\text{gate}} \propto L \cdot W
\]

\[
R_{\text{channel}} \propto L/W
\]
Standard Cell Libraries

- A standard cell library provides implementations of common gates (NAND, NOR, XOR, etc.) for a specific implementation technology.

- Each gate includes:
 - Electrical parameters (e.g., Rs and Cs)
 - Physical layout

- Synthesis tools use gates from the standard library instead of sizing and placing individual transistors.
Wide (High-Fanin) Gates

Most standard cell libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R_{pulldown} or R_{pullup}. Instead, use trees of smaller devices...

Example: 8-input NAND

How does t_{PD} grow with the number of inputs N?

If we use a single CMOS gate, $t_{PD} \propto N$

If we use a tree of gates, $t_{PD} \propto \log(N)$
CMOS Power Dissipation

- Total power dissipation: \(P = P_{\text{dynamic}} + P_{\text{static}} \)
- Dynamic power: Caused by 0\(\leftrightarrow \)1 transitions of nodes in the circuit
 - Charging/discharging each capacitor consumes \(\frac{1}{2} CV_{DD}^2 \) energy
 - If on average \(C_s \) capacitance across the chip switches each cycle, and there are \(f_{CLK} \) cycles per second
 \[
 P_{\text{dynamic}} = \frac{1}{2} C_s V_{DD}^2 f_{CLK}
 \]
- Static power: Caused by
 - Subthreshold leakage: Even when the FET is off, a very small current flows from source to drain (\(R_{OFF} < \infty \))
 - Tunneling current: Gate and channel are separated by a very thin (<1nm) dielectric, so some electrons tunnel through
 \[
 P_{\text{static}} = I_{\text{static}} V_{DD}
 \]
 - Static power is typically 10-30% of total power
Summary

- FETs behave as voltage-controlled switches

- CMOS gates:
 - Use complementary pullup and pulldown networks
 - Use pFETs in pullup, nFETs in pulldown network

- CMOS gates are inverting (rising inputs can only cause falling outputs, and vice versa)
Thank you!

Next lecture:
Combinational logic and introduction to Minispec