Combinational Logic and Introduction to Minispec
Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter

- Learn how to implement combinational circuits in the Minispec hardware description language (HDL)
 - Design each combinational circuit as a function, which can be simulated or synthesized into gates
Building a Combinational Adder

- **Goal:** Build a circuit that takes two n-bit inputs a and b and produces $(n+1)$-bit output $s = a + b$

- **Approach:** Implement the binary addition algorithm we have seen (called the standard algorithm)

\[\begin{array}{cccc}
 a_{n-1} & a_0 & b_{n-1} & b_0 \\
 \ldots & & \ldots & \\
 \text{n-bit adder} & & \text{n-bit adder} & \\
 & s_n & s_0 & \\
 \ldots & & \ldots & \\
\end{array} \]

\[\begin{array}{c}
 1110 + 0111 \\
 \hline
 10101 \\
 \text{carry}
\end{array} \]
Formalizing the Standard Algorithm

- The i^{th} step of each addition
 - Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
 - Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
 - The 2-bit output $c_{i+1}s_i$ is the binary sum of the three inputs

Can you build a circuit that performs a single step with what you’ve learned so far?
Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers: \(a, b, \) and carry-in
 - Produces a sum bit and a carry-out bit

- Then, cascade FAs to perform binary addition

- Result: A ripple-carry adder (simple but slow)
Deriving the Full Adder

Truth table

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_in</th>
<th>c_out</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boolean expressions

- \(s = a \oplus b \oplus c_{in} \)
- \(c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in} \)
Describing a 32-bit Adder alternatives

- Truth table with 2^{64} rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$
 - $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$
- Circuit diagrams: tedious to draw, error-prone

- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.)

But be aware of the differences!
Introduction to Minispec

A simple HDL based on Bluespec
Combinational Logic as Functions

- In Minispec, combinational circuits are described using functions.

```
function Bool inv(Boolean x);
    Boolean result = !x;
    return result;
endfunction
```

- All values have a fixed type, which is known statically (e.g., result is of type `Boolean`).
- Note: **Types Start With An Uppercase Letter, variable and function names are lowercase**
Bool Type and Operations

- Values of type `Bool` can be True or False
- `Bool` supports Boolean and comparison operations:

```
Bool a = True;
Bool b = False;

Bool x = !a;       // False since a == True
Bool y = a && b;  // False since b == False
Bool z = a || b;  // True since a == True

Bool n = a != b;  // True; equivalent to XOR
Bool e = a == b;  // False; equivalent to XNOR
```

- `Bool` is the simplest type, but working with many single-bit values is tedious
 - Need a type that represents multi-bit values!
Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```
Bit#(4) a = 4'b0011;  // 4-bit binary 3
Bit#(4) b = 4'b0101;  // 4-bit binary 5
Bit#(4) x = ~a;       // 4'b1100
Bit#(4) y = a & b;    // 4'b0001
Bit#(4) z = a ^ b;    // 4'b0110
```

- Bit selection

```
Bit#(1) l = a[0];    // 1'b1 (least significant)
Bit#(3) m = a[3:1];  // 3'b001
```

- Concatenation

```
Bit#(8) c = {a, b};  // 8'b00110101
```
Full Adder in Minispec

\[
\begin{align*}
& s = a \oplus b \oplus c_{in} \\
& c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}
\end{align*}
\]

function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 Bit#(1) s = a \oplus b \oplus c_{in};
 Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
return {cout, s};
endfunction
2-bit Ripple-Carry Adder

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
 Bit#(2) lower = fullAdder(a[0], b[0], cin);
 Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
 return {upper, lower[0]};
endfunction

- Functions are **inlined**: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones
4-bit Ripple-Carry Adder

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
 Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
 Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
return {upper, lower[1:0]};
endfunction

- Composing functions lets us build larger circuits, but writing very large circuits this way is tedious
 - Next lecture: Writing an n-bit adder in a single function
Multiplexers
2-way Multiplexer

- A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input)

- Gate-level implementation:
 - If a and b are n-bit wide then this structure is replicated n times; s is the same input for all the replicated structures

\[y = a \cdot \overline{s} + b \cdot s \]
4-way Multiplexer

- A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

 - Typically implemented using 2-way multiplexers

- An n-way multiplexer can be implemented with a tree of $n-1$ 2-way multiplexers
Multiplexers in Minispec

- **2-way mux → Conditional operator**

 - Minispec: `s? b : a`
 - Python: `b if s else a`
 - *s has type* `Bool`; *True* is treated as 1 and *False* as 0

- **N-way mux → Case expression**

 - Minispec: `case (s)`
    ```
    0 : a;
    1 : b;
    2 : c;
    3 : d;
    endcase
    ```
 - Minispec: `s has type Bit#(2)`
Aside: No Conditional Execution!

- Given this conditional statement...

 \[s? \text{foo}(x) : \text{bar}(y) \]

- In software, the program would first evaluate \(s \), then run \text{either foo}(x) \text{ or bar}(y) \)

- But in hardware, this statement instantiates and evaluates \text{both foo}(x) \text{ and bar}(y), in parallel!
Selecting a Wire: \texttt{x[i]} \\

- **Constant selector**: e.g., \texttt{x[2]}

 \begin{itemize}
 \item \texttt{x0}
 \item \texttt{x1}
 \item \texttt{x2}
 \item \texttt{x3}
 \end{itemize}

 [2]

 no hardware; \texttt{x[2]} is just the name of a wire

- **Dynamic selector**: \texttt{x[i]}

 \begin{itemize}
 \item \texttt{x0}
 \item \texttt{x1}
 \item \texttt{x2}
 \item \texttt{x3}
 \end{itemize}

 \texttt{i}

 4-way mux
Shift operators
Fixed-Size Shifts

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

Arithmetic right shift by \(n \) divides integer in two’s complement representation by \(2^n \)

\[
\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\downarrow & & & \\
0 & 0 & 1 & 0
\end{array}
\]

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\downarrow & & & \\
1 & 1 & 1 & 1 & 0
\end{array}
\]

- \(\div 4 \) = -2
Logical Right Shift by s

- Suppose we want a shifter that right-shifts an N-bit input x by s, where $N=32$ and $0 \leq s \leq 31$
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way one-bit muxes are needed to implement this structure?

$$(32-1) \times 32 = 992$$

$\approx 4k$ gates

We can do better!
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 ($=4+1$) can be done with shifts of sizes 4 and 1
 - The bit encoding of s tells us which shifts are needed: if the i^{th} bit of n is 1, then we need to shift by 2^i
 - Ex: $5 = 0b00101$
 - Implementation: A cascade of $\log_2 N$ muxes that choose between shifting by 2^i and not shifting

How many 2-way 1-bit muxes?

$N \times \log_2 N = 32 \times 5 = 160$
Barrel Shifter Implementation

- Example in Minispec for N=4
 - Only need 2 bits for s, why?

- Use conditional operator for 2-way muxes

- Use concatenation and bit selection for fixed shifts

```plaintext
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0) ? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (s[0] == 0) ? r1 : {1'b0, r1[3:1]};
    return r0;
endfunction
```
Thank you!

Next lecture:
Complex combinational circuits and advanced Minispec