Design Tradeoffs in Sequential Circuits
Software vs. Hardware Design
Timing is the key difference

1. Software interfaces (even instructions) are timing-independent
 - Specify what should happen, not when

     ```
     while (b != 0) {
       a = a * b;
       b = b - 1;
     }
     ```

2. Hardware design is all about timing
 - Specify what happens on every clock cycle...
 - ...which itself determines the length of the clock cycle

     ```
     module Factorial;
     Reg#(Word) a(0);
     Reg#(Word) b(0);
     rule step;
     ... 
     ```
Optimizing Your Hardware Design

- There are many possible implementations of the same functionality, with different area-time-power tradeoffs
- Optimization metrics:
 1. Throughput
 2. Latency
 3. Area of the design
 4. Power consumption
 5. Energy of executing a task
 6. ...
Lecture Outline

- Examine design tradeoffs in digital logic: throughput, latency, and area
 - Power & energy are important, but out of scope for 6.004

- Extend pipelined designs to integrate them with other circuits
 - Valid bits, stall logic, queues

- Study how to generalize an FSM to solve multiple problems
 - First step towards building a general-purpose processor!
Throughput, Latency, and Area Tradeoffs
Recap: Benefits of Sequential Logic

- Sequential circuits can implement more computations than combinational circuits
 - Variable amount of input and/or output
 - Variable number of steps

- Even when combinational circuits suffice, sequential circuits allow more design tradeoffs
 - Pipelined circuits improve throughput by increasing frequency and overlapping multiple computations
 - Folded circuits reduce area by reusing a small amount of combinational logic over multiple cycles
Reminder: Pipelined Circuits

- Pipelining breaks a combinational circuit over multiple **stages** using registers
 - Each computation takes multiple cycles
 - On each cycle, each stage processes a different value
 - $t_{CLK} \downarrow \rightarrow$ Throughput \uparrow

- Pipeline diagrams

<table>
<thead>
<tr>
<th>Clock cycle</th>
<th>Pipeline stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>$F(X_i)$</td>
</tr>
<tr>
<td>$i+1$</td>
<td>$F(X_{i+1})$</td>
</tr>
<tr>
<td>$i+2$</td>
<td>$F(X_{i+2})$</td>
</tr>
<tr>
<td>$i+3$</td>
<td>$F(X_{i+3})$</td>
</tr>
<tr>
<td>$i+1$</td>
<td>$G(X_i)$</td>
</tr>
<tr>
<td>$i+2$</td>
<td>$G(X_{i+1})$</td>
</tr>
<tr>
<td>$i+3$</td>
<td>$G(X_{i+2})$</td>
</tr>
<tr>
<td>$i+2$</td>
<td>$H(X_i)$</td>
</tr>
<tr>
<td>$i+3$</td>
<td>$H(X_{i+1})$</td>
</tr>
<tr>
<td>$i+4$</td>
<td>$H(X_{i+2})$</td>
</tr>
</tbody>
</table>

Diagram:

- Input X flows through stages F, G, and H.
- Each stage processes a different value.
- Throughput increases as t_{CLK} decreases.

Diagram showing pipeline stages and inputs:

- $F(15)$
- $G(20)$
- $H(25)$
- $P(X)$
Reminder: Pipelined Multiplier

Combinational
- Area = $\Theta(N^2)$
- $t_{PD} = \Theta(N)$
- Latency = $\Theta(N)$
- Throughput = $\Theta(1/N)$

Pipelined
- Area = $\Theta(N^2)$
- $t_{CLK} = \Theta(1)$
- #stages = $\Theta(N)$
- Latency = $\Theta(N)$
- Throughput = $\Theta(1)$
Reminder: Folded Circuits

- Combinational circuits often have repetitive logic
 - Example: N-bit multiplier has N-1 adders
- **Folded circuits** use less combinational logic, reuse it over multiple cycles
 - Example: Implement multiplication with one adder, taking \(\sim N \) cycles to perform the additions

\[
\text{Init: } P \leftarrow 0, \text{ load } A&B
\]

Repeat N times {
 \[
P \leftarrow P + (A_{\text{LSB}}==1 ? B : 0)
\]
 shift \(S_N, P, A \) right one bit
}

Done: 2N-bit result in \(P, A \)

Tradeoff: reduced area, but lower throughput
Summary: Design Alternatives

Several combinational blocks in one pipeline stage (A)

One block per pipeline stage (B)

Folded: Reuse a single block, multicycle (C)

Clock: \(B \approx C < A \)

Area: \(C < A < B \)

Throughput: \(C < A < B \)
Clock Frequency Constraints

- To analyze latency and throughput, so far we’ve assumed t_{CLK} depends only on our circuit
 - So lower $t_{PD} \rightarrow$ lower $t_{CLK} \rightarrow$ lower latency & higher throughput

- In practice, other constraints may set t_{CLK}
 - Propagation delay of other circuits
 - Limits on power consumption

- When our own circuit is not limiting t_{CLK}, throughput and latency tradeoffs change
 - Example: 4-stage vs. 2-stage pipeline
 - If $t_{CLK,4\text{stage}} = t_{CLK,2\text{stage}}/2$? Throughput: 2x, Latency: 1x
 - If $t_{CLK,4\text{stage}} = t_{CLK,2\text{stage}}$? Throughput: 1x, Latency: 2x
Increasing Throughput with Replication

- We can increase throughput by replicating a circuit and using the copies in parallel
- Example: Using two pipelined circuits in parallel

- Processes two values each cycle
- Metrics vs a single pipeline:
 - Clock? \(\text{Same} \)
 - Throughput? \(2x \)
 - Area? \(2x \)
Example: Pipeline or Replicate?

- Consider the following two multipliers
 - PipedMul
 - FoldedMul

 4-stage pipelined multiplier
 Throughput = 1/t_{\text{CLK}}

 Folded multiplier that takes 4 cycles per output
 Throughput = 1/(4t_{\text{CLK}})

 Similar t_{\text{CLK}} vs. PipedMul, lower area

- Can you design a circuit that uses FoldedMul to achieve the same throughput as PipedMul?

 Replicate FoldedMul 4 times
 Each FoldedMul produces an output and takes a new input every 4 cycles
 Throughput = 4*1/(4t_{\text{CLK}}) = 1/t_{\text{CLK}}
Pipeline Extensions
Pipeline Extensions

- Producer may not have input every cycle → Valid bits
- Consumer may not be able to accept output every cycle → Stall logic to freeze/pause the pipeline
- With large pipelines, may need to decouple stages further → Use queues instead of registers
Pipelines with Valid Bits

- If the producer won’t give an input every cycle, tag each stage with a valid bit
 - In Minispec, use Maybe types

- Invalid inputs propagate through the pipeline, produce invalid outputs:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>V1</td>
<td>V2</td>
<td>Inv</td>
<td>V3</td>
<td>Inv</td>
<td>Inv</td>
<td>V4</td>
<td>V5</td>
</tr>
<tr>
<td>Stage 2</td>
<td>V1</td>
<td>V2</td>
<td>Inv</td>
<td>V3</td>
<td>Inv</td>
<td>Inv</td>
<td>V4</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>V1</td>
<td>V2</td>
<td>Inv</td>
<td>V3</td>
<td>Inv</td>
<td>Inv</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pipelines with Stall Logic

- If the consumer can’t accept an output every cycle, we need to freeze the pipeline (and the producer!)
- Solution: Stall signal + registers with enable circuit
 - If stall is True, all pipeline registers retain their values

<table>
<thead>
<tr>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>V4</td>
<td>V4</td>
<td>V5</td>
<td>V5</td>
<td>V5</td>
</tr>
<tr>
<td>Stage 2</td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>V3</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td>Stage 3</td>
<td>V1</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V3</td>
<td>V3</td>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td>Stall</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Combining Valid Bits + Stall Logic

- If the consumer stalls, we can still let the pipeline make progress if a stage has an invalid value:

Table

<table>
<thead>
<tr>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>V1</td>
<td>V2</td>
<td>Inv</td>
<td>V3</td>
<td>V4</td>
<td>Inv</td>
<td>V5</td>
<td>V5</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Inv</td>
<td>V1</td>
<td>V2</td>
<td>Inv</td>
<td>V3</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Inv</td>
<td>Inv</td>
<td>V1</td>
<td>V2</td>
<td>V2</td>
<td>V3</td>
<td>V3</td>
<td>V3</td>
</tr>
<tr>
<td>Output</td>
<td>Inv</td>
<td>Inv</td>
<td>Inv</td>
<td>V1</td>
<td>V1</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
</tr>
<tr>
<td>Stall</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Stalling Delay in Large Pipelines

- We can’t stall large pipelines immediately
 - Stall signal drives a huge number of register enables → excessive fan-out causes delay
 - Stall delay eventually sets t_{PD}, and limits t_{CLK}!

- Solution: Use queues with >1 element instead of registers to separate pipeline stages
 - Stages don’t stall unless queue is full
 - Allows making stall decisions local
Example: 2-Element FIFO Queue
First-In, First-Out

- Holds up to two values
- Outputs first enqueued value
- dequeue input controls whether to advance queue
- Possible implementation:

```plaintext
module FIFO2#(type T);
    Reg#(Maybe#(T)) e0(Invalid);
    Reg#(Maybe#(T)) e1(Invalid);

    method Maybe#(T) first = e0;
    method Bool isFull = isValid(e0) && isValid(e1);

    input Bool dequeue default = False;
    input Maybe#(T) enqueue default = Invalid;

    rule tick;
        let next0 = dequeue? e1 : e0;
        let next1 = dequeue? Invalid : e1;

        if (isValid(enqueue)) begin
            if (!isValid(next0)) next0 = enqueue;
            else if (!isValid(next1)) next1 = enqueue;
        end
        e0 <= next0;
        e1 <= next1;
    endrule
endmodule
```

```
Invalid  sel_1
  |      |  e1  
  |      |  e0  
  |      | sel_0
  |      |  first
  dequeue
  enqueue

isFull  sel_1
  |      | sel_0

enquepe  first
```
Using Queues to Decouple Stages

- Queues allow decoupling stall decisions:
 - A stage stalls only if its output queue is full
 - Tradeoff: Can’t enqueue to full queue, even if an element is being dequeued on the same cycle
 - We could build a queue that allowed this, but this would add a combinational path from dequeue to `isFull`
 (so we’d still have the problem of high stall `t_{PD}`!)
 - Queues also provide tolerance to variable latencies
 - Buffer multiple results without stalling producer when consumer takes variable number of cycles
From Special-Purpose FSMs to General-Purpose Processors
6.004 So Far

- What can you do with these?
 - Take a (solvable) problem
 - Design a procedure (recipe) to solve the problem
 - Design a finite state machine that implements the procedure and solves the problem

- What you’ll be able to do after this week:
 - Design a machine that can solve any solvable problem, given enough time and memory (a *general-purpose computer*).

<table>
<thead>
<tr>
<th>Finite State Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential Elements</td>
</tr>
<tr>
<td>Combinational Logic</td>
</tr>
<tr>
<td>CMOS Gates</td>
</tr>
<tr>
<td>Transistors</td>
</tr>
</tbody>
</table>
Example: Factorial FSM

Let’s design a circuit to compute factorial(N)

Python:
```python
a = 1
b = N
while b != 0:
    a = a * b
    b = b - 1
```

C:
```c
int a = 1;
int b = N;
while (b != 0) {
    a = a * b;
    b = b - 1;
}
```

High-level FSM:
- States: start, loop, done
- Boolean transitions: \(b \neq 0 \) and \(b = 0 \)
- Register assignments in states:
 - start: \(a \leq 1 \), \(b \leq N \)
 - loop: \(a \leq a \times b \), \(b \leq b - 1 \)
 - done: \(a \leq a \), \(b \leq b \)

- Describes cycle-by-cycle behavior
- Registers: \((a, b)\)
- States: \((\text{start}, \text{loop}, \text{done})\)
- Boolean transitions: \((b=0, b\neq 0)\)
- Register assignments in states:
 - (e.g., \(a \leftarrow a \times b \))
Datapath for Factorial

- Implement registers
- Implement combinational circuit for each assignment
- Connect to input muxes

\[\begin{align*}
 a &\leq 1 \\
 a &\leq a \times b \\
 a &\leq a \\
 b &\leq N \\
 b &\leq b - 1 \\
 b &\leq b
\end{align*} \]
Control FSM for Factorial

- Implement combinational logic for transition conditions
- Implement control FSM:
 - States: High-level FSM states
 - Inputs: Transition conditions
 - Outputs: Mux select signals

\[
\begin{array}{ccc}
& a \leq 1 & a \leq a \times b & a \leq a \\
& b \leq N & b \leq b - 1 & b \leq b \\
\end{array}
\]
Programming the Datapath

- We can use our factorial datapath and change the control FSM to solve other problems! Examples:
 - Multiplication
 - Squaring

- But very limited problems. Reasons:
 - Limited storage (only two registers!)
 - Limited set of operations, and inputs to those operations
 - Limited inputs to the control FSM
A Simple Programmable Datapath

- Each cycle, this datapath:
 - Reads two operands (a, b) from 4 registers (x1-x4)
 - Performs one operation of +, -, *, & on operands
 - Optionally writes result to a register

- Control FSM:
A Control FSM for Factorial

- **Assume initial register contents:**
 - x1 value = 1
 - x2 value = N
 - x3 value = -1
 - x4 value = 0

- **Control FSM:**

```
loop mul
  asel = x1
  bsel = x2
  opsel = 2 (*)
  wen = 1
  wsel = x1
  x1 <= x1 * x2
  mul x1, x1, x2

loop sub
  asel = x2
  bsel = x3
  opsel = 0 (+)
  wen = 1
  wsel = x2
  x2 <= x2 + x3
  add x2, x2, x3

loop beq
  eq == 0
  asel = x2
  bsel = x3
  opsel = 0
  wen = 0
  wsel = x2
  x2 <= x2 + x3
  add x2, x2, x3
  beq x2, x3, loopmul

done
  eq == 1
  asel = X
  bsel = X
  opsel = X
  wen = 0
  wsel = X
  N! in x1
  j done
```
New Problem \rightarrow New Control FSM

- You can solve many problems with this datapath!
 - GCD, Fibonacci, exponentiation, division, square root, ...
 - But nothing that requires more than four registers

- By designing a control FSM, we are programming the datapath

- Early digital computers were programmed this way!
 - ENIAC (1943):
 - First general-purpose digital computer
 - Programmed by setting huge array of dials and switches
 - Reprogramming it took about 3 weeks

- Modern computers instead store programs in memory, coded as a sequence of instructions

more on next lecture...
Thank you!

Next lecture: Building a RISC-V processor