Boolean Algebra
and Logic Synthesis

Reminders:
• Lab 1 checkoff due tomorrow 9/29
• Lab 2 due Thursday 9/30
A combinational device is a circuit element that has

- **one or more digital inputs** \("0" \leq \text{VIL}, \ "1" \geq \text{VIH} \)
- **one or more digital outputs** \("0" \leq \text{VOL}, \ "1" \geq \text{VOH} \)
- **a functional specification** that details the value of each output for every possible combination of valid input values
- **a timing specification** consisting (at a minimum) of a propagation delay \((t_{PD}) \): an upper bound on the required time to produce valid, stable output values from an arbitrary set of valid, stable input values

Static discipline

Output a "1" if at least 2 out of 3 of my inputs are a "1". Otherwise, output "0".

I will generate a valid output in no more than 2 nanoseconds after seeing valid inputs.
Functional Specifications

- There are many ways to specify the function of a combinational device

- We will use two systematic approaches:
 - **Truth tables** enumerate the output values for all possible combinations of input values
 - **Boolean expressions** are equations containing binary (0/1) variables and three operations: AND (\(\cdot \)), OR (\(+\)), and NOT (\(\overline{\cdot} \))

\[
Y = \overline{C} \cdot A + C \cdot B
\]

Any combinational function can be specified as a truth table or Boolean expression
Boolean Algebra

How to interpret and manipulate Boolean expressions
Boolean Algebra

- **Boolean algebra comprises**
 - Two elements, 0 and 1
 - Two binary operators, AND (·) and OR (+)
 - One unary operator, NOT (overbar)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a·b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>a+b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- All of Boolean algebra can be derived from the definitions of AND, OR, and NOT
In addition to using truth tables to define AND, OR, and NOT, we can derive all of Boolean algebra using a small set of axioms:

- **Identity**
 - $a \cdot 1 = a$
 - $a + 0 = a$

- **Null**
 - $a \cdot 0 = 0$
 - $a + 1 = 1$

- **Negation**
 - $\overline{0} = 1$
 - $\overline{1} = 0$

Duality principle: If a Boolean expression is true, then replacing $0 \leftrightarrow 1$ and AND \leftrightarrow OR yields another expression that is true.

- This principle holds for the axioms \rightarrow Holds for all expressions
- Halves the number of expressions you have to learn 😊
Useful Boolean Algebra Properties

- Using the axioms, we can derive several useful properties to manipulate and simplify Boolean expressions:

 - **commutative**
 \[a \cdot b = b \cdot a \quad \quad a + b = b + a \]

 - **associative**
 \[a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \quad a + (b + c) = (a + b) + c \]

 - **distributive**
 \[a \cdot (b + c) = a \cdot b + a \cdot c \quad \quad a + b \cdot c = (a + b) \cdot (a + c) \]

 - **complements**
 \[a \cdot \overline{a} = 0 \quad \quad a + \overline{a} = 1 \]

 - **absorption**
 \[a \cdot (a + b) = a \quad \quad a + a \cdot b = a \]

 - **reduction**
 \[a \cdot b + a \cdot \overline{b} = a \quad \quad (a + b) \cdot (a + \overline{b}) = a \]

 - **DeMorgan’s Law**
 \[a \cdot \overline{b} = \overline{a} + \overline{b} \quad \quad a + b = \overline{a} \cdot \overline{b} \]
Useful Boolean Algebra Properties

- Many of these properties are easy to remember because they match the ones for integer algebra, but be aware of the differences
 - e.g., distributive property for Boolean “+”
 \[a + b \cdot c = (a+b) \cdot (a+c) \] does not hold for integer “+”!

- To familiarize yourself with the properties, we recommend that you simply prove them

 Example: DeMorgan’s Law

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>(\overline{a} \cdot b)</th>
<th>(\overline{a} + \overline{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Equivalence and Normal Form

- Given a truth table, it is easy to derive an equivalent Boolean expression: write a **sum-of-product (SOP)** terms where each term covers a single 1 in the truth table.

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[Y = \overline{C}\overline{B}A + \overline{C}BA + CB\overline{A} + CBA \]

- This representation is called the function’s **normal form**.
 - It is unique, but there may be simpler expressions.
- Corollary: Boolean expressions can represent any combinational function.
Logic Synthesis

Building logic circuits from Boolean expressions
From Boolean Algebra to Gates

- A logic diagram represents a Boolean expression as a circuit schematic with logic gates and wires.

- Basic logic gates:
 - AND
 - \(Z = A \cdot B \)
 - OR
 - \(Z = A + B \)
 - Inverter
 - \(Z = \overline{A} \)
 - We often use AND and OR gates with more than two inputs.

- AND, OR, and NOT gates are universal: They can implement any combinational function. Why?
We can implement any sum-of-products (SOP) Boolean expression with three levels of gates:

1. Inverters
2. ANDs
3. OR

However, we can often implement the same function with fewer gates. This requires simplifying its Boolean expression to use fewer operations.

$$Y = \overline{CBA} + \overline{CBA} + CBA + CBA$$
Boolean Simplification of SOPs

- A **minimal sum-of-products** is a sum-of-products expression that has the smallest possible number of AND and OR operators
 - Unlike the normal form, it is not unique (a function may have multiple minimal SOPs)
 - Minimal SOPs can be implemented with fewer gates

- Simple algebraic manipulation (using the properties we’ve seen) is sufficient to minimize small expressions (3-4 variables)

- More sophisticated techniques exist (e.g., K-maps), but we will not need them in this course

\[
Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}
\]

\[
Y = \overline{CBA} + CB + \overline{CBA}
\]

\[
Y = \overline{CA} + CB
\]
Another way to reveal simplification is to rewrite the truth table using “don’t cares” (\(\sim\), \(X\), or \(?\)) to indicate when the value of a particular input is irrelevant in determining the value of the output.

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(X)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(X)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(X)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(X)</td>
<td>1</td>
</tr>
<tr>
<td>(X)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(X)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\overline{CA}\]
\[CB\]
\[BA\]
Multi-Level Boolean Simplification

- We can often reduce the number of gates by using more logic levels than an SOP
 - Find common subexpressions and factor them out into independent variables
- Example:
 \[F = A \cdot C + B \cdot C + A \cdot D + B \cdot D \quad \text{(minimal SOP)} \]
 \[F = (A+B) \cdot C + (A+B) \cdot D \]
 \[X = A + B \]
 \[F = X \cdot C + X \cdot D \]

- Multi-level simplification has no well-defined optimum
 - Adding levels may reduce gates but increase delay
In practice, tools use Boolean simplification and other techniques to synthesize a circuit that meets certain area, delay, and power goals:

- High-level circuit specification (e.g., Boolean algebra, Minispec)
- Standard cell library (set of gates and their physical characteristics)
- Optimization goals (area/delay/power)
- Synthesis tool
- Optimized circuit implementation (using standard cell library gates)
Other Common Gates

- **XOR (Exclusive-OR)**

 \[Z = A \oplus B = \overline{A} \cdot B + A \cdot \overline{B} \]

- **Inverting logic**

 - **NAND**
 \[Z = A \cdot B \]

 - **NOR**
 \[Z = \overline{A + B} \]
Universal Building Blocks

- NANDs and NORs are universal:
- Any logic function can be implemented using only NANDs (or, equivalently, NORs)
Standard Library

- Library of gates and their physical characteristics
- Example:

<table>
<thead>
<tr>
<th>Gate</th>
<th>Delay (ps)</th>
<th>Area (µ²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Buffer</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>AND2</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>NAND2</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>OR2</td>
<td>55</td>
<td>26</td>
</tr>
<tr>
<td>NOR2</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>AND4</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>NAND4</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>OR4</td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>NOR4</td>
<td>80</td>
<td>32</td>
</tr>
</tbody>
</table>

Observations:
1. In current technology (CMOS), inverting gates are faster and smaller
2. Delay and area grow with number of inputs
Design Tradeoffs: Delay vs Size

- **AND4:**
 \[t_{PD} = 90 \text{ ps}, \text{ size} = 40\mu^2 \]

- **NAND4 + INV:**
 \[t_{PD} = 90 \text{ ps}, \text{ size} = 40\mu^2 \]

- **2*NAND2 + NOR2:**
 \[t_{PD} = 1 \text{ NAND2} + \text{ NOR2} = 65 \text{ ps}, \text{ size} = 2 \text{ NAND2} + \text{ NOR2} = 46\mu^2 \]
Example: Mapping a Circuit to a Standard Cell Library

Find an implementation of a circuit, e.g.,

Using gates from a standard cell library, e.g.,

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

That optimizes for some goal, e.g., minimum area
Example: Mapping a Circuit to a Standard Cell Library

Possible implementations:

7 NAND2 (3) = 21
5 INV (2) = 10

Total area cost: 31

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

Total area cost: 19
Logic Optimization Takeaways

- Synthesizing an optimized circuit is a very complex problem
 - Boolean simplification
 - Mapping to cell libraries with many gates
 - Multidimensional tradeoffs (e.g., minimize area-delay-power product)

- Infeasible to do by hand for all but the smallest circuits!

- Instead, hardware designers write circuits in a hardware description language, and use a synthesis tool to derive optimized implementations
Summary

- Any combinational (Boolean) function can be specified by a truth table or a Boolean expression (binary literals and AND, OR, NOT, which form a Boolean algebra)

- Any combinational function can be expressed as a sum-of-products (SOP) and implemented with three levels of logic gates (NOTs, ANDs, OR)

- Boolean simplification (finding a minimal SOP, multi-level simplification) results in simpler circuits

- There are MANY design tradeoffs in mapping Boolean functions to gates. We will use synthesis tools to find optimized circuit implementations
Thank you!

Next lecture: CMOS Technology