Complex Combinational Logic: Implementation and Design Tradeoffs
Outline

- Implement large combinational circuits in MiniSpec
 - Parametric types and functions

- Design tradeoffs in combinational circuits
 - 2 shifter designs
 - 3 adder designs
4-bit Ripple-Carry Adder

function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) carryIn);
 Bit#(1) sum = a ^ b ^ carryIn;
 Bit#(1) carryOut = (a & b) | (carryIn & a) | (carryIn & b);
return {carryOut, sum};
endfunction

function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) carryIn);
 Bit#(2) lower = fullAdder(a[0], b[0], carryIn);
 Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
return {upper, lower[0]};
endfunction

function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) carryIn);
 Bit#(3) lower = rca2(a[1:0], b[1:0], carryIn);
 Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
return {upper, lower[1:0]};
endfunction

// Expected 5+3+1 = 9
%%eval rca4(5,3,1)
%%synth rca4 -v

- Problem 1: Have to write a function for every bit width
- Problem 2: If we build large functions from smaller ones, have to write many functions!
Parametric Types

- **Bit#(n)**, an n-bit value, is a parametric type
 - n is the parameter (an Integer value)
 - Using Bit#(n) requires specifying n (e.g., Bit#(4) is a 4-bit value)
- Minispec provides other parametric types, and lets you define your own
 - Parametric types are *generic*
 - Parameters must be known at compile-time
 - Specifying the parameters yields a *concrete* type
 - They take one or more parameters
- Parameters can be Integers or types
 - Example: Vector#(n, T) is an n-element vector of T’s (e.g., Vector#(4, Bit#(8)) = 4-elem vector of 8-bit values)
Parametric Functions

- Functions have fixed argument and return types
 - Problem 1: Have to write a function for every bit width
 - Problem 2: If we build large functions from smaller ones, have to write many functions! (e.g., \texttt{rca2}→\texttt{rca4}→\texttt{rca8} \ldots)

- Parametric functions solve these problems: We can write one \emph{generic} function that covers every case
 - Example: \texttt{rca#(n)}, an \emph{n}-bit ripple-carry adder

- A parametric function must be invoked with fixed parameters, which instantiates a \emph{concrete} function
 - Example: Calling \texttt{rca#(32)} instantiates a 32-bit adder
Example: Parametric Parity

function Bit#(1) parity#(Integer n)(Bit#(n) x);
 return (n == 1)? x : x[n-1] ^ parity#(n-1)(x[n-2:0]);
endfunction

- Large circuits implemented by composing smaller ones: parity#(n) invokes parity#(n-1)!
- If another function calls parity#(3), compiler produces:

 function Bit#(1) parity#(3)(Bit#(3) x);
 return x[2] ^ parity#(2)(x[1:0]);
endfunction
function Bit#(1) parity#(2)(Bit#(2) x);
 return x[1] ^ parity#(1)(x[0:0]);
endfunction
function Bit#(1) parity#(1)(Bit#(1) x);
 return x;
endfunction
Integer is a Special Type
Always evaluated by the compiler

- Integer values are (positive or negative) numbers with an **unbounded number of bits**
 - Unbounded bits → Cannot be synthesized to hardware

- Integers are guaranteed to be evaluated at compile time, i.e., turned into fixed numbers
 - If the compiler cannot evaluate an Integer expression, it throws an error

- Integer supports the same operations as Bit#(n), (arithmetic, logical, comparisons, etc.)
 - But evaluated by compiler → operations on Integers never produce any hardware
N-bit Ripple-Carry Adder

function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
 Bit#(n) lower = rca#(n-1)(a[n-2:0], b[n-2:0], cin);
 Bit#(2) upper = fullAdder(a[n-1], b[n-1], lower[n-1]);
 return {upper, lower[n-2:0]};
endfunction

// Base case
function Bit#(2) rca#(1)(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
 return fullAdder(a, b, cin);
endfunction
Type Inference

- You can omit the type of a variable by declaring it with the let keyword.
- The compiler infers the variable’s type from the type of the expression assigned to the variable.

```verilog
Bit#(4) x = 4'b0011;
let y = x;       // y has type Bit#(4)
let z = {x, x}; // z has type Bit#(8)
let n = 42;     // n has type Integer
```
User-Defined Types

- **Type synonyms** allow giving a different name to a type
  ```
typedef Bit#(8) Byte;
  ```

- **Structs** represent a group of member values with different types
  ```
typedef struct {
    Byte red;
    Byte green;
    Byte blue;
  } Pixel;
  ```

- **Enums** represent a set of symbolic constants
  ```
typedef enum {
    Ready, Busy, Error
  } State;
  ```

- Structs and enums are much clearer than using raw bits!

  ```
  Pixel p;
  p.red = 255;
  ```
For Loops

- For loop statements allow compactly expressing a sequence of similar statements

```plaintext
Bit#(6) w = 0;
for (Integer i = 0; i < 6; i = i + 1)
    w[i] = z[i / 2];
```

- For loops are not like loops in software programming languages!
 - Fixed number of iterations
 - (Integer induction variable!)
 - Unrolled at compile time
 - Example: The loop above is translated into this sequence:
    ```plaintext
    w[0] = z[0];
    w[1] = z[0];
    w[2] = z[1];
    w[3] = z[1];
    w[4] = z[2];
    w[5] = z[2];
    ```
N-bit Ripple-Carry Adder with Loop

function Bit#(n+1) rca#(Integer n)(Bit#(n) a, Bit#(n) b, Bit#(1) cin);
 Bit#(n) s = 0;
 Bit#(n+1) c = {0, cin};
 for (Integer i = 0; i < n; i = i + 1) begin
 let x = fullAdder(a[i], b[i], c[i]);
 s[i] = x[0];
 c[i+1] = x[1];
 end
 return {c[n], s};
endfunction
Conditional Statements

- If statements have a syntax similar to software:

  ```
  function Bit#(4) max(Bit#(4) a, Bit#(4) b);
  
  Bit#(4) result = b;
  if (a > b) result = a;
  return result;
  endfunction
  ```

  ```
  function Bit#(4) max(Bit#(4) a, Bit#(4) b);
  
  Bit#(4) result;
  if (a > b) result = a;
  else result = b;
  return result;
  endfunction
  ```

- But they are implemented very differently from software programming languages!
 - Translated to muxes, like conditional expressions
 - Each variable assigned within an if statement uses a mux to select the right value (the one assigned in the if branch, else branch, or the previous value)

- Minispec also has case statements (see tutorial)
Minispec Takeaways

- Minispec lets you build circuits with constructs similar to those of software programming languages

- But keep in mind that the implementation of these features is often quite different from software!
 - Parametric functions and types are instantiated
 - Functions are inlined
 - Conditionals (?:, if-else, case) are translated to multiplexers, and all their branches are evaluated
 - Loops are unrolled
 - What remains is an acyclic graph of gates

Never forget that you’re designing hardware
Design Tradeoffs in Combinational Circuits
Algorithmic Tradeoffs in Hardware Design

- Each function often allows many implementations with widely different delay, area, and power.

- Choosing the right algorithms is key to optimizing your design.
 - Tools cannot compensate for an inefficient algorithm (in most cases).
 - Just like programming software.

- Case studies:
 - Building a better shifter
 - Building a better adder
Fixed-Size Shifts

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
Logical Right Shift by variable size

- Suppose we want a shifter that right-shifts an N-bit input x by s, where $N=32$ and $0 \leq s \leq 31$ (5 bits)
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way one-bit muxes are needed to implement this structure?

$$ (32-1) \times 32 = 992 $$

$= \sim 4k$ gates

We can do better!

Tree-like 32-input mux

Each input is 32-bit
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 ($=4+1$) can be done with shifts of sizes 4 and 1
 - The bit encoding of s tells us which shifts are needed: if the i^{th} bit of s is 1, then we need to shift by 2^i
 - Ex: $5 = 5'b00101$
 - Implementation: A cascade of $\log_2 N$ muxes that choose between shifting by 2^i and not shifting
Barrel Shifter
An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 ($=4+1$) can be done with shifts of sizes 4 and 1
 - The bit encoding of s tells us which shifts are needed: if the i^{th} bit of s is 1, then we need to shift by 2^i
 - Ex: $5 = 5'b00101$
 - Implementation: A cascade of $\log_2 N$ muxes that choose between shifting by 2^i and not shifting

How many 2-way 1-bit muxes?

$$\log_2 N \times N = 5 \times 32 = 160$$
Compare 2 Shifters

- Barrel shifter has similar latency as the naïve design but uses much smaller area

\[N \times (N-1) = 32 \times 31 = 992 \]

\[\log_2 N \times N = 5 \times 32 = 160 \]
Barrel Shifter Implementation

- Example in Minispec for N=4
 - How many bits for s?
 - Only need 2 bits for s

- Use conditional operator for 2-way muxes
- Use concatenation and bit selection for fixed shifts

```verbatim
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
    Bit#(4) r1 = (s[1] == 0) ? x : {2'b00, x[3:2]};
    Bit#(4) r0 = (s[0] == 0) ? r1 : {1'b0, r1[3:1]};
    return r0;
endfunction
```
Ripple-Carry Adder: Simple but Slow

- Worst-case path: Carry propagation from LSB to MSB, e.g., when adding 11...111 to 00...001

\[t_{PD} = n \times t_{PD,FA} \approx \Theta(n) \]

- \(\Theta(n) \) is read “order n” and tells us that the latency of our adder grows linearly with the number of bits of the operands
Two copies of the high half of the adder:
- one assumes carry-in of “0”
- the other carry-in of “1”

The carry-out of the low half selects the correct version of the high-half addition.

- Propagation delay: \(t_{PD,32} = t_{PD,16} + t_{PD,MUX} \)
 - If we used 16-bit ripple-carry adders, this would roughly halve delay over a 32-bit ripple-carry adder
 - If we apply the same strategy recursively (build each 16-bit adder from 8-bit carry-select adders, etc.), \(t_{PD,n} = \Theta(\log n) \)

Drawbacks? Consumes much more area than ripple-carry adder
Wide mux adds significant delay (lab 4)
Carry-Lookahead Adders (CLAs)

- CLAs compute all carry bits in $\Theta(\log n)$ delay

- Key idea: Transform chain of carry computations into a tree
 - Transforming a chain of associative operations (e.g., AND, OR, XOR) into a tree is easy
 - But how to do this with carries?
Carry-Lookahead Adder Details

NOTE: Remaining slides are optional material which will not be on a quiz but can be helpful for Lab 4 and the Design Project
Summary

- Parametric functions let us write a generic description of a function that is then instantiated on demand.

- Use for loops and if-else statements with care: their similarity to software can be confusing and they can lead to poor circuits.

- Choosing the right algorithms is crucial to design good digital circuits—tools can only do so much!

- Carry-select and carry-lookahead adders achieve $\Theta(\log n)$ delay, but at the cost of extra area.
Good Luck on the Quiz! 😊

Next lecture: Sequential Circuits
Carry-Lookahead Adder Details

NOTE: Remaining slides are optional material which will not be on a quiz but can be helpful for Lab 4 and the Design Project
Carry Generation and Propagation

\[s = a \oplus b \oplus c_{in} \]
\[c_{out} = ab + ac_{in} + bc_{in} \]

- We can rewrite \(c_{out} = ab + (a+b)c_{in} \) as \(c_{out} = g + pc_{in} \)
 - with \(g = ab \) (generate)
 - and \(p = a+b \) (propagate)

- \(g=1 \) \(\rightarrow \) \(c_{out} = 1 \) (FA generates a carry)
- \(p=1 \) (and \(g=0 \)) \(\rightarrow \) \(c_{out} = c_{in} \) (FA propagates carry)

Note \(p \) and \(g \) don’t depend upon \(c_{in} \)
Consider a 2-bit ripple-carry adder. Let’s derive c_2 as a function of c_0 and the individual g’s and p’s.

\[
c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0) \\
\]

\[
= g_1 + p_1 g_0 + p_1 p_0 c_0
\]

What about a 4-bit adder?

\[
g_{10} = g_1 + p_1 g_0 \quad p_{10} = p_1 p_0 \\
g_{32} = g_3 + p_3 g_2 \quad p_{32} = p_3 p_2 \\
g_{30} = g_{32} + p_{32} g_{10} \quad p_{30} = p_{32} p_{10} \\
c_4 = g_{30} + p_{30} c_0
\]
CLA Building Blocks

- Step 1: Generate individual g & p signals
 \[a \downarrow b \downarrow \]
 \[gp = \{g, p\} \]
 \[g = ab \]
 \[p = a+b \]

- Step 2: Combine adjacent g & p signals
 \[gp_{ij} gp_{(j-1)k} \]
 \[g_{ik} = g_{ij} + p_{ij}g_{(j-1)k} \]
 \[p_{ik} = p_{ij}p_{(j-1)k} \quad (i \geq j > k) \]

- Step 3: Generate individual carries
 \[gp_{ij} c_j \]
 \[c_{i+1} = g_{ij} + p_{ij}c_j \]

There are many CLA variants. Let’s derive the Brent-Kung CLA.
Generating and Combining gp’s

How does delay grow with number of bits?

$\Theta(\log n)$
Generating the Carries
Carry-Lookahead Adder Takeaways

- There are many CLA designs
 - We’ve seen a Brent-Kung CLA
 - Several other types (e.g., Kogge-Stone)
 - Different variants for each type, e.g., using higher-radix trees to reduce depth

- This technique is useful beyond adders: computes any one-dimensional binary recurrence in $\Theta(\log n)$ delay
 - e.g., comparators, priority encoders, etc.